The curvature and dimension of non-differentiable
surfaces

S. Halayka*
September 16, 2019

Abstract

The curvature of a surface can lead to fractional dimension. In this paper, the
properties of the 2-sphere surface of a 3D ball and the 2.x-surface of a 3D fractal set
are considered. Tessellation is used to approximate each surface, primarily because the
2.x-surface of a 3D fractal set is otherwise non-differentiable.

1 Tessellation of surfaces

Approximating the surface of a 3D shape via triangular tessellation allows us to calculate
the surface’s dimension, somewhere between 2.0 and 3.0. In this paper, Marching Cubes [1]
is used to generate the triangular tessellations.

For a 2-sphere, the local curvature vanishes as the size of the triangles decreases. This
results in a dimension of 2.0. See Figures 1, 2, and 3.

On the other hand, for the surface of a 3D fractal set, the local curvature does not vanish.
This results in a dimension greater than 2.0, but no greater than 3.0. See Figures 4, 5, 6,
and 7.

A small piece of C++ code is given in the next section, in lieu of mathematical notation.

This method of calculating the fractal dimension of a surface is novel.

References

[1] Bourke P. http://paulbourke.net/geometry/polygonise/

2] Joel
https://www.gamedev.net/forums/topic/703956-opengl-compute-shader-problem/
?do=findComment&comment=5413849

*sjhalayka@gmail.com



2 Core C++ code

int main(int argc, char xxargv)

{
if (2 != argce)
return 1;

indexed _mesh mesh;

if (false — mesh.load_from_binary_stereo_lithography_file (argv[1]))
return 2;

vector< vector<size_t> > tri_neighbours;
vector<vertex_3> tri_normals;

tri_neighbours.resize (mesh. triangles.size ());
tri_normals.resize (mesh. triangles.size ());

for (size_-t i = 0; i < mesh.triangles.size (); i++)

{

mesh. get_tri_neighbours (i, tri_neighbours[i]);

tri_normals[i] = mesh.get_tri_normal (i);
¥
float final_measure = 0;
const float largest_area = mesh.get_largest_triangle_area ();

for (size_-t i = 0; i < mesh.triangles.size (); i++)

{
// Assume that there are three neighbouring triangles.
// This means that the mesh must be closed
// (e.g. no holes or cracks).

vertex_3 nl = tri_normals[tri_neighbours[i][0]];
vertex_3 n2 = tri_normals[tri_neighbours[i][1]];
vertex_3 n3 = tri_normals[tri_neighbours[i][2]];

float dotl = tri_normals[i].dot(nl);
float dot2 = tri_normals[i].dot(n2);
float dot3 = tri_normals[i].dot(n3);
float d = (dotl + dot2 + dot3) /
0

) 3.0f;
float measure = (1.0f — d) / 2.

it ¢

const float triangle_area = mesh.get_triangle_area(i);

final_measure += measure * (triangle_area / largest_area);

}

cout << ”Dim:” << 2.0f + final _measure/mesh.triangles.size () << endl;

return 0;



Figure 1: Low resolution surface for the iterative equation is Z = Z2. The surface’s dimension
is 2.01682.

Figure 2: Medium resolution surface for the iterative equation is Z = Z2. The surface’s
dimension is 2.05516.

Figure 3: High resolution surface for the iterative equation is Z = Z2. The surface’s dimen-
sion is 2.00097.



Figure 4: Low resolution surface for the iterative equation is Z = Z cos(Z). The surface’s
dimension is 2.05266.

Figure 5: Medium resolution surface for the iterative equation is Z = Z cos(Z). The surface’s
dimension is 2.10773.

Figure 6: High resolution surface for the iterative equation is Z = Z cos(Z). The surface’s
dimension is 2.07679.



Figure 7: A 2D slice of Z = Z cos(Z), showing the fractal nature of the set.



