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0. Abstract 
0.1. Abstract – English 
Repetitive tasks in Sandbox Games obstruct players to play cooperatively and to experience 

other, more interesting content of the game. This problem can be fixed with automation of 

these repetitive tasks by means of Artificial Intelligence (AI). This automation has to be 

accessible for any kind of player. That is why Imitation Learning is employed to imitate 

behavior desired by the player. The prototype of a Sandbox Game “Dominus” implements 

Unity’s Machine Learning Agents to test the capabilities and limitations of this technology. The 

prototype shows learning abilities of the algorithm, its performance compared to 

conventional Utility-based AI and complications during the process of its implementation. The 

results appear for Imitation Learning to be the right choice in theory, but the current state of 

the technology and the implementation do not provide the means to solve the problem 

sufficiently. Nonetheless, the insights gained throughout the process present additional 

approaches, that promise to enhance the implementation to be a successful and viable 

attempt. 

0.2. Abstract – German 
Repetitive Aufgaben in Sandbox Spielen verhindern das kooperative Zusammenspiel der 

Mitspieler und zwingen sie viel Zeit in einzelne Teilbereiche des Spiels zu investieren, welche 

sie vom gewünschten Inhalt des Spiels abhalten. Automatisierung dieser repetitiven Aufgaben 

durch Künstliche Intelligenz (KI) könnte das Problem lösen. Dieses automatisierte System muss 

ohne weiteren Aufwand für jede Art von Spieler verwendbar sein. Deshalb soll Imitation 

Learning eingesetzt werden, um vom Spieler bevorzugtes Verhalten zu imitieren. Es wird ein 

Prototyp Sandbox Spiel „Dominus“ geschaffen, der Unity’s Machine Learning Agents Toolkit 

implementiert, um die Möglichkeiten und Einschränkungen dieser Technologie zu testen. Der 

Prototyp zeigt auf, welche Lernfähigkeiten der Algorithmus besitzt, welche Leistung er 

gegenüber herkömmlicher Utility-basierter KI erzielt und wo Probleme in der Implementation 

auftreten können. Es wird offensichtlich, dass Imitation Learning prinzipiell die richtige Wahl 

für das Lösen des Problems ist, aber auch dass die Technologie und die Möglichkeiten der 

Implementation in der im Prototyp vorhandenen Form nicht ausreichen, um das gewünschte 

Ergebnis zu erzielen. Aus den Erkenntnissen können allerdings weitere Schlussfolgerungen 

und Ansätze gezogen werden, die eine erfolgreiche Implementation von Imitation Learning in 

Aussicht stellen. 
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1. Repetitive tasks obstructing cooperative gameplay 
From the year 2006 Minecraft [2006, Mohjang] dominated the Sandbox Survival genre and its 

sales reached 144 million across all platforms in 2018.1 It probably hit a nerve since its very 

beginnings: players could follow their own idea of what the game should be about. Other than 

in story driven games or games with a dedicated goal, in Sandbox games there is generally no 

overarching primary goal to achieve. There typically is no end screen to the game, 

congratulating the player for beating the last level or final boss of the game. The Sandbox 

game goes on indefinitely.  

The content of a Sandbox game can otherwise vary, for example physics-based simulation, 

economic simulations or Roleplaying Games (RPGs). The term Survival indicates the need for 

the player to do something in order to not lose. This often includes gathering resources and 

creating some form of safety. The primary source of fun to the player is that the way to go 

about this is open to her creativity and that the any goals to reach are set by herself. 

In terms of Bartle’s Taxonomy2, originally found for MUDs (Multi User Dungeons), there are 

ways to play the game as achievers, explorers, socializers or killers: Achievers “give themselves 

game-related goals, and vigorously set out to achieve them”. Explorers “try to find out as much 

as they can about the virtual game world”. Socializers “use the game's communicative 

facilities, and apply the role-playing that these engender, as a context in which to converse 

(and otherwise interact) with their fellow players”. Killers “use the tools provided by the game 

to cause distress to (or, in rare circumstances, to help) other players”.  

While this taxonomy is not exclusively endemic to cooperative Sandbox Survival games, it 

becomes obvious that the range of variety is greater here than in other genres, e.g. when 

compared to an Action Shooter game, like Counter-Strike, where exploration hits its limits 

with the map’s confinements and the amount of weaponry. 

Usually other Sandbox Survival games, like 7 Days to Die, Ark, Space Engineers or Don’t Starve, 

share this kind of play styles. But they do also share the same problems:  

The game invites players to play cooperatively, but the shape of cooperative play often 

disintegrates into several parallel tasks for individual players. Even though a greater goal is 

achieved together, the single tasks to fulfill this greater goal will often be taken on by a single 

player for each task. In terms of efficiency and coordination it absolutely makes sense to the 

                                                           
1 “Minecraft Sales Reach 144 Million Across all Platforms; 74 Million Monthly Players“ Wwcftech, 1. Jan. 2018. 
https://wccftech.com/minecraft-sales-144-million/ Accessed Aug. 2018 
2 Bartle, Richard. “Hearts, Clubs, Diamonds, Spades: Players who suit MUD” Apr. 1996. 
http://mud.co.uk/richard/hcds.htm Accessed Aug. 2018 
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player to have specialized roles, but it also diminishes the intention of cooperative play in 

short-term. When a group of players decide to build a home-base, they might need defenses, 

food and resources, as well as some items only acquired outside the home-base. So, while one 

player sets out to the world to find rare items, another is tasked to build walls and traps, 

someone else raises and maintains a farm and yet another grabs a shovel to dig in the ground 

for precious minerals. Some of these tasks, like mining, can be very repetitive and go on 

indefinitely, while others require arrangement and coordination of players to not obstruct 

each other’s endeavor, like building a base. Therefore, it is more effective to the players to 

distribute tasks among themselves. Depending on the game, they might even be forced to do 

so, when enemies menace the base in the short-term and weather conditions threaten the 

group’s food supplies in the long run.  

For that reason, the freedom for players to choose their own play-style succumbs to the 

demands of the group and the requirements for the group to succeed in the game 

environment. Of course, this can be a deliberate choice for the game’s design: A shared 

greater goal3 and the successful reaching of it produces a sense of group achievement. 

Specialized roles create a sense of identity and ownership of a player in the group. Also, 

repetitive grinding is a valid design choice to increase the game’s longevity and to induce 

cognitive flow4 in the player. 

This works well in games like World of Warcraft [2004, Blizzard] or Grand Theft Auto Online 

[2013, Rockstar North], when players are close by, separated only for short times and work 

together on short-term goals. They engage the common goal in direct relation to each other. 

But in Sandbox games, players can be far from each other for a long time. The cooperative 

aspects only appear in the long term, as the short-term tasks need to be done. The common 

goal is only achieved indirectly with other players in the group.  

It is interesting to look at common Sandbox design choices and single out the components, 

that support cooperative gameplay in a way that players can engage directly with each other 

on a more regular basis. To enhance direct engagement, it could suffice to reduce the 

necessity for constant, active pursuit of repetitive, indirectly connected tasks, without 

                                                           
3 Staats, David. ”Designing Cooperative Gameplay Experiences“ Gamasutra, 15. Dec. 2015. 
https://www.gamasutra.com/blogs/DavidStaats/20151221/261927/Designing_Cooperative_Gameplay_Experie
nces.php Accessed Aug. 2018 
4 Baron, Sean. “Cognitive Flow: The Psychology of Great Game Design“ Gamasutra, 22. Mar. 2012 
https://www.gamasutra.com/view/feature/166972/cognitive_flow_the_psychology_of_.php  
Accessed Aug. 2018 



4 
 

removing them from the game entirely. They belong to the players’ common knowledge of 

what is expected of a Sandbox Survival game. Should a player choose to grind for minerals, he 

still should have the option to do so. 

So, how can the time spent playing alone in a cooperative game be reduced to crisp, 

meaningful sections to enhance direct cooperative efforts? 

2. Automation and Artificial Intelligence 
In the history of games, that include amassing some kind of material gain, there always were 

lazy (or smart) players, that decided they have better things to do with their time than 

repeatedly doing the same thing over and over again but did not want to miss out on the 

benefits in doing so. So, they employed third-party tools, namely bots, to do the chores in a 

simplistic fashion.  These might be simple fishing bots for World of Warcraft, or even literal 

robotics, that push the keyboard’s space bar every second to increase the characters Jumping 

skill in The Elder Scrolls III: Morrowind [2002, Bethesda Softworks]. This even goes so far as 

bots in competitive games, either destroying the opposition with super-human capabilities or 

performing subpar to collect consolation prizes at the end of a doomed match.  

When these bots do not make the game pointless to other players in Counter-Strike [2000, 

Valve] or League of Legends [2009, Riot], they at least give those crafty players an advantage 

over their peers. No wonder that game developers try to counteract by using their own tools 

to combat this form of cheating. Usually this means a ban of the player account from the 

game, at first for a reasonable amount of time but possibly permanently.  

But the craftiness of those cheating players merits some attention, perhaps even admiration. 

The evolution of technical advance of mankind was always about making life easier. Of course, 

this does not excuse the spoiling of other players’ gaming time or the circumvention of 

deliberate design choices. Even though, some games reward smart players that use 

automation. In those cases, no third-party tool is needed, but the tools are already built in, for 

example the Redstone-circuitry of Minecraft, or the conveyor belts and inserters of Factorio 

[2016, Wube Software]. 

Typically, this kind of enjoyment is rather niche and it takes effort to set up such automation 

processes to the point where players decide to dismiss this option entirely. To open up 

automation for everybody to enjoy, it would need a system that does not require a lot of 

learning or complicated logic for players to use it. Ideally, the player should not need anything 

new to learn and, instead, show the system what he wants it to do by example. 
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This is where the technology of Imitation Learning comes into play, as it promises to do exactly 

that. A presentation of Unity’s Machine Learning Agents at the convention Unite Berlin 20185 

claimed that it “Doesn’t take long to mimic behavior” and showed an example for the racing 

game Antigraviator [2018, Cybernetic Walrus]. In the example one player-controlled racer 

provided the machine learning agent, who was controlling another racer, with training data. 

After only 30 seconds of training, the AI controlled racer is starting to turn in the right 

moments. After five minutes of training it is hard for an observer to distinguish between the 

behaviors of the player-controlled racer and the agent-controlled racer. 

Figure 1 – Antigraviator* 

Should Unity’s Machine Learning Agents Toolkit (MLAgents) perform similarly well in more 

complex scenarios, then it is adequate for using it for automation of repetitive processes in 

Sandbox Games. A prototype of a Sandbox Game, that includes the most common game 

mechanics of the genre, will test the toolkit’s performance. The prototype’s code architecture 

has to support the requirements of Sandbox Games and for the MLAgents Toolkit. The 

prototype has to be able to show the learning capabilities of the algorithm to make a decision 

possible, whether this technology provides the results needed to employ it in a commercial 

environment in more complex scenarios. Or in other words, is it feasible to use MLAgents 

Toolkit’s Imitation Learning algorithm by Unity in a way, that allows players to train characters 

to do repetitive work in a Sandbox Game easily and reliably?   

                                                           
5 Berges, Vincent-Pierre“Democratize Machine Learning” Unite Berlin, 21. Jun. 2018.  
https://www.youtube.com/watch?v=a768FLX9bRc&t=2h30m Accessed Aug. 2018 
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3. State of the Art 
3.1. Game Engines 
Game Engines provide a fast and easy way to create games and prototypes for professionals 

and hobbyists alike. The availability of a game loop, a render engine etc. makes it possible to 

focus on the game itself. With some products, like the Unreal Engine 4 [2014, Epic Games], 

not a single line of code is required to create a functioning game. Other renowned game 

engines are Source Engine [2004, Valve] and CryEngine V [2016, Crytek]. Most of these engines 

are free to use and experiment with up to a commercial release of a game, when their 

developers take royalties of the profits.  

For the purpose of the prototype for Dominus the game engine Unity3D [2004, Unity 

Technologies] had to be employed, as the technology used to provide Imitation Learning, 

namely Unity Machine Learning Agents Toolkit, was created specifically for this game engine. 

3.2. Machine Learning Software 
TechEmergence, the “[...] industry source for authoritative market research and competitive 

intelligence for [...] artificial intelligence”6 defines Machine Learning like this: 

“Machine Learning is the science of getting computers to learn and act like humans do, and 

improve their learning over time in autonomous fashion, by feeding them data and 

information in the form of observations and real-world interactions.”7 

Machine Learning software is used in business analytics, finance, healthcare, marketing, 

robotics and security. Some examples for open-source software are Deeplearning4j8, 

OpenNN9 and TensorFlow10. The proprietary software includes big names like Amazon Web 

Services11, Microsoft Azure12 and Oracle Data Mining13. This shows, that machine learning is 

commonplace in today’s business world. In games there are less examples.  

Unity’s Machine Learning Agents Toolkit is an attempt to democratize machine learning, so 

more game developers can experiment with the technology, just like it is done in this Bachelor 

thesis. It serves as middleware between Python-based TensorFlow and the Unity3D game 

engine. Unity’s Machine Learning Agent will be used in the prototype “Dominus”. 

                                                           
6 “About TechEmergence” TechEmergence. https://www.techemergence.com/about/ Accessed Aug. 2018 
7 Faggella, Daniel. “What is Machine Learning?” TechEmergence, 2. Sep. 2017 
https://www.techemergence.com/what-is-machine-learning/ Accessed Aug. 2018 
8 Deeplearning4j, 2017. https://deeplearning4j.org/ Accessed Aug. 2018 
9 OpenNN Neural Networks, 2018. http://www.opennn.net/ Accessed Aug. 2018 
10 TensorFlow. https://www.tensorflow.org/ Accessed Aug. 2018 
11 Amazon Web Services, 2018. https://aws.amazon.com/ Accessed Aug. 2018 
12 Microsoft Azure, 2018. https://azure.microsoft.com/ Accessed Aug. 2018 
13 “Oracle Data Mining” Oracle. http://www.oracle.com/technetwork/database/options/advanced-
analytics/odm/overview/index.html Accessed Aug. 2018 
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3.3. Example Sandbox Games 

3.3.1. Minecraft as paragon of Sandbox crafting games  
The most famous example of a Sandbox crafting game probably is Minecraft, released in May 

2009 by Markus “Notch” Persson. To this day it is continuously being developed and was 

recently released for the Nintendo Switch14. It features procedurally 3-dimensional generated 

terrain and biomes, crafting, equipment, interactable objects, hunger, pets, monsters, towns 

of Non-Player Characters (NPCs) and multiplayer. It is easy to create modifications (mods) and 

a lot of unofficial content enriches the games of enthusiastic players to this day. One of these 

mods, Minecraft Hunger Games, is even considered the predecessor of the whole genre of 

Battle Royale15. Sandbox games in particular often are measured in respect to the success of 

Minecraft. Some of these Sandbox games following in the wake of the Sandbox hype are Don’t 

Starve [2013, Klei Entertainment] , 7 Days to Die [2013, The Fun Pimps], Terraria [2011,  

Re-Logic], Space Engineers [2013, Keen Software] and Factorio. Each of these titles 

emphasized on a certain aspect of their paragon, Minecraft, but still kept the core formula. 

3.3.2. Sandbox games based on Minecraft 
While Don’t Starve focuses on the hunger mechanic, 7 Days to Die tries to enhance the danger 

to the player imposed by zombies. Both games thereby create a sense of common enemy to 

encourage players to cooperate. Terraria takes the concept to a 2-dimensional world and 

introduces boss encounters and equipment of varying quality to give it more of an adventure 

style touch. Here, too, the common short-term goal of defeating the enemy invites players to 

join forces. All of the above attempts, including Minecraft, rely on repetitive tasks done by 

solitary players over elongated times for progression of the group.  

3.3.3. Sandbox games with Automation 
Space Engineers takes the concept to zero-gravity with physics-simulated destruction and 

introduces the possibility to program behavior of constructions with LUA scripts within the 

game. Automation makes up most part of Factorio, where conveyer belts and automated 

workshops continuously produce resources, while the player constantly expands the process. 

In both cases attempts were made to reduce repetitive tasks with automation. But to do so 

players have to either, in case of Space Engineers, have skills in programming, or have to split 

responsibilities to not obstruct careful planning of efficient building of a factory in Factorio. 

                                                           
14 “Minecraft: Nintendo Switch Edition” Nintendo, 12. May 2017. https://www.nintendo.de/Spiele/Nintendo-
Switch/Minecraft-Nintendo-Switch-Edition-1214741.html Accessed Aug. 2018 
15 Green, Ollie. “Minecraft: Hunger Games is the best Battle Royale Game” GameByte. 10. May 2018 
http://www.debate.org/opinions/minecraft-hunger-games-or-fortnite-battle-royale Accessed Aug. 2018 
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3.3.4. Sandbox games with Artificial Intelligence 
Not all Sandbox games derive their formula from Minecraft. In fact, one of the influences for 

Minecraft was Dwarf Fortress [2006, Tarn Adams], where the player manages a kingdom of 

up to 200 dwarves, which all have their own desires, properties, characteristics and quirks. 

The dwarves act autonomously based on their traits and current needs, similar to another 

famous Sandbox game, The Sims [2000, Maxis]. Both of these games employ Utility-based AI 

to control NPCs. This has the advantage of the player not being needed at all times for each 

character. The player has the time to experience the content, that is most interesting to him.  

Both of these games are not meant to be played cooperatively with other players, though. 

While the problem of repetitive tasks obstructing cooperative gameplay does not appear in 

this context, it is still an interesting solution to use AI when the player wants to take her 

attention to something else. 

3.4. Example Machine Learning Games 
Black & White [2001, Lionhead Studios] is not a Sandbox game, as there is a clear goal to the 

game. The player has to impress NPCs with miraculous presentation of her godly powers to 

grow her radius of influence and then attack her antagonist’s base until it breaks. The player 

is given a mostly autonomously acting creature, which makes it possible for her to interact 

with the game world out of his radius of influence. She can also teach the creature to perform 

tasks like fetching food or lumber, performing miracles or attacking enemy towns. When the 

creature does the right thing, the player can reward it. When it does the wrong thing, the 

creature could be punished. The ideal taught creature would be able to play the game without 

the need of the player. The neural network used here resembles Reinforcement Learning and 

comes close to what the solution of the problem of repetitive tasks in Sandbox games could 

be about. 

Creatures [1996, Cyberlife Technology] is an attempt by Steve Grand to create artificial life. In 

his pursuit he created the game as a byproduct. The characters in the game, called Norns, are 

childlike autonomous creatures, controlled by a neural network. Norns have virtual DNA, and 

a biochemical system, which means they have needs for certain types of nourishment, can get 

sick and also reproduce. The player has no direct control over the Norns, but can influence the 

game world and can reward and punish the Norns for good and bad behavior, similar to  

Black & White. Both examples show the possibilities for Machine Learning to create lifelike 

behavior in NPCs. 
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4. Related Work 
Unity’s Machine Learning Agent Toolkit is a fairly new product, as it was only introduced in 

September 2017.16 While Machine Learning has some use-cases in games, it is not 

commonplace technology. This is reasonable when considering the unpredictability of the 

learning process. The lack of authorial control makes it hard to debug errors both in the 

environment and the setup of the algorithm. TensorFlow is working hard on visualizing the 

setup of machine learning algorithms, which makes debugging easier. The impact of 

TensorGraph17 on the games industry remains to be seen. Nonetheless, conventional AI is 

more reliable in terms of debugging and production time to large game companies, that 

cannot afford risks in productions with massive budget. For that reason, it comes down to 

independent developers, hobbyists and enthusiasts to explore possibilities, limitations and 

pitfalls of the technology. 

Unity’s Technical Evangelists are constantly exploring ways to convey Machine Learning 

potential pioneer developers, while technicians react to requests and bugs fixes suggested by 

the active developer community. The best resources at this moment to get a first glance at 

Unity’s Machine Learning Toolkit are the blog posts “Using Machine Learning Agents Toolkit 

in a real game: a beginner’s guide”18 and “Imitation Learning in Unity: The Workflow”19 by 

Alessia Nigretti.  

For a deeper understanding of the implementation of the Toolkit in a project is the Git-

repository20 and the documentation therein. At this point, there is no citable paper for the 

technology, but the creators have announced some document to come.21 

The first competition hosted by Unity Technologies “ML-Agents Challange 1”22 from January 

2018 featured 43 submissions. None of the challengers tried to get results similar to what is 

proposed in this paper.  

                                                           
16 Juliani, Arthur. “Introducing: Unity Machine Learning Agents Toolkit” Unity Blog, 19. Sep. 2017. 
https://blogs.unity3d.com/2017/09/19/introducing-unity-machine-learning-agents/ Accessed Aug. 2018 
17 “TensorBoard: Graph Visualization” TensorFlow, 19. Jul 2018.  
https://www.tensorflow.org/guide/graph_viz Accessed Aug. 2018 
18 Nigretti, Alessia. “Using Machine Learning Agents Toolkit in a real game: a beginner’s guide” Unity Blog,  
11. Dec. 2017. https://blogs.unity3d.com/2017/12/11/using-machine-learning-agents-in-a-real-game-a-
beginners-guide/ Accessed Aug. 2018  
19 Nigretti, Alessia. “Imitation Learning in Unity: The Workflow” Unity Blog, 24. May 2018. 
https://blogs.unity3d.com/2018/05/24/imitation-learning-in-unity-the-workflow/ Accessed Aug. 2018 
20 Unity Machine Learning Agents Toolkit. Unity Technologies, 2018. 
 https://github.com/Unity-Technologies/ml-agents  
21 “Issue #962: Citation of the project.” Unity Technologies, 10. Jul. 2018.  
https://github.com/Unity-Technologies/ml-agents/issues/962 Accessed Aug. 2018 
22 “ML-Agents Challenge 1” Unity Technologies, 31. Jan. 2018  
https://connect.unity.com/challenges/ml-agents-1 Accessed Aug. 2018 
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5. Imitation of Player Behavior using Machine Learning Agents 
5.1. The Game Vision 
Often gamers and game developers, professionals and hobbyists alike, fantasies about the 

perfect game. This leads to an overblown concept with a multitude of mechanics in the game, 

that might not be as much fun as expected and also might not be doable in a reasonable time 

frame. But it is fun to put everything into the basic concept and then reduce it from there. The 

result will be a game that is fun to play as well as doable by developers of a certain team size 

in a reasonable time frame. 

5.1.1 Dominus - Game Design 
The prototype “Dominus” is a top-down Sandbox Game, in which the player has the resources 

to plan and execute her own projects by means of artificially intelligent non-player characters 

(NPC). Individual NPCs act on their own to fulfill a multitude of needs by using skills of varying 

quality. The player can take control over an NPC for any length of time, which is called 

dominating. While being dominated NPCs record the behavior of the player and imitate this 

behavior when they are released from domination. NPCs are organized in towns with three to 

30 inhabitants. Multiple towns can act aggressively or cooperatively towards each other. 

5.1.1.1 Automated Content creation  
The beauty about pen and paper roleplaying games (RPG), like Dungeons & Dragons  

[2003, Wizards of the Coast], is that you play it with the most flexible computer known to 

mankind, which is the human brain of the Game Master. When in a classical video game there 

is no content available behind a door, the door is usually locked. But the human mind can, 

based on the circumstances, spontaneously envision what should be behind the door and the 

Game Master can create that content as the players break down the door. Sure, some 

procedural generated content can do a similar thing, based on some preprogrammed rules. In 

a way this is Artificial Intelligence generating content. Modern machine learning algorithms 

could just as well be utilized to simulate a human mind for this, when done right.  

5.1.1.3 Attributes and Skills 
Pen-and-paper RPGs also give other insights, that help understanding what Dominus should 

be about. To simulate different characters, usually character sheets contain a multitude of 

statistics about the character’s abilities and conditions. A librarian usually has high Intelligence 

values, while a warrior depends on his Strength. A short glance on the character sheet tells 

the observer what kind of character is written there. He can also assume how the character 

would behave in different situations. While in a combat situation the warrior would thrive in 

the thick of bloodshed, a librarian would probably take cover or panic. On the other hand, a 



11 
 

simple puzzle could cause the warrior with low Intelligence quite a headache, while the 

librarian goes at the task with glee. This shows that with only a few statistics there already can 

be made distinctions between characters, which creates variety and ownership of the player 

for some situations. For that reason, characters in Dominus have Attributes and Skills 

determining the quality of possible success of actions within the game world. The pen-and-

paper RPG Savage Worlds23 provided statistics and values for an initial setup of Dominus. 

5.1.1.4 Character Behaviors and Domination 
How the characters behave, though, is still just an assumption of the observer or player. It is 

based on references from other media, like books, movies or video games. On the rational 

side, it is simply logical to have a character with high Vitality and Strength values in the 

frontline to soak damage, that would kill more fragile characters. But emotionally there can 

even be differences between two warrior types, like a cruel bandit king and a morally 

compassed paladin. Either way, the Artificial Intelligence of non-player characters in video 

games is limited to what the developer can accomplish. It simply cannot hold all the references 

about warriors on its own and recreate sensible behavior from those books and movies. These 

behaviors have to be created by the developer beforehand. But they could be instilled by 

those that already have the references, which are the players, instead. The advantage here is 

that the range of behaviors is not limited by the time frame of development and can grow as 

the game is being played. Imitation Learning seems to make this endeavor possible. By 

imitating the behavior of the player, the artificially intelligent non-player character can 

reproduce what the player imagines to be a sensible behavior for a certain character. 

In Dominus the player would not control an actual character, that is able to interact with the 

game world. Instead she controls the Dominator, a parasite, that has the ability to take over 

control of any character for short and long periods of time, which is called dominating. While 

the player dominates a character, all actions performed by the player will be recorded by the 

Imitation Learning process. As a result, the dominated character will reproduce the behavior 

it was shown, as soon as it is released from domination. This enables players to specialize 

characters of his town to specific tasks and automate repetitive processes without the 

requirement for doing something else than actually playing the game. There is no need for the 

player to learn any logic or programming. The behavior of characters is steadily changed and 

                                                           
23 “Savage Worlds - Gentleman’s Edition Revised - Probefahrt” Prometheus Games, 2013.  
https://www.prometheusgames.de/download/savage-worlds/SW-GER-Probefahrt-v1.11-web.pdf  
Accessed Aug. 2018 
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improved well beyond the cycle of development and release of the game. The characters will 

behave in a fashion, which players assume to be sensible, provided they teach the Imitation 

Learner with sensible examples.  

5.1.1.5 Motivation and Happiness 
But there is more to a character’s behavior than reacting to specific situations. People have a 

day-to-day life. In pen and paper RPGs these parts are often omitted due to two reasons. First, 

the attention of the players is limited to what they are being told by the Game Master, which 

in turn is limited by language. The Game Master is tasked with filtering the important 

information from the trivial. This leads to second: It is simply not as much fun to listen to 

detailed descriptions of every single character’s comings and goings. In practice, a broad 

depiction of the situation will suffice until a specific information is important to what the Game 

Master has planned or what a player requests to know. Other information is left for the 

player’s imagination to fill in the blanks. In video games, however, all of this information is 

displayed to the player when the game camera is angled at a situation. The player decides to 

what he will turn his attention to. In most games these situations are brief and most of the 

day-to-day life of an NPC is unimportant to the player. When the player enters a workshop in 

an action RPG, he expects the smith to do some crafting and be readily available to sell him 

weaponry or armor. Should the smith nervously rummage through some inventory, 

exclaiming frustration, this indicates to the player that there might be something interesting, 

perhaps a quest, at hand. This can even be done more simply with an NPC idly standing about 

and a big, yellow exclamation point hovering over his head. This might not be very lifelike, but 

usually players are forgiving as they, again, fill in the blanks with their imagination.  

In simulation games, or god games, the NPC’s behavior is visible most of the time. In any 

sandbox game the illusion of life, and thereby the immersion, can fall apart when the player 

decides to follow an NPC for an elongated time only to see that the NPC is running around in 

circles without a goal or reason. To give any NPC a motivation to pursue some reasonable goal 

at all times, characters in Dominus have needs to be fulfilled by several actions in the game 

world, similar to The Sims. Maslow’s hierarchy of needs24 acts as role model. Every character 

in the game is subject to its Happiness, a value determined by the number of sufficiently 

fulfilled needs. Happiness gives benefits, like faster movement, interaction speed and 

additional crafting recipes. 

                                                           
24 McLeod, Saul. “Maslow's Hierarchy of Needs” SimplyPsychology, 2018.  
https://www.simplypsychology.org/maslow.html Accessed Aug. 2018 

https://www.simplypsychology.org/maslow.html
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Figure 2 - Maslow’s Hierarchy of Needs* 

 

It is easy to imagine an implementation of physiological needs, as many games already do. 

Minecraft and 7 Days to Die both use a hunger mechanic to force players to act. If they do not 

act to combat their character’s hunger, they get punished by weaker performance of their 

characters or damage over time concluding in virtual death. Often two negative results can be 

observed: First, food supplies can run low in the most inconvenient moments of the game, 

which forces the player to interrupt his current endeavor to refill his supplies. This can happen 

at faraway places from stockpiles of food, so players have to move great distances for a long 

time, which keeps them from the actual fun content of the game. Second, the abundance of 

food available often comes down to two possible states. Either there is not enough of it, 

forcing the player to actively seek out sources, which can be the core aspect of a game like 

Don’t Starve. In the other extreme, acquiring food is no problem anymore whatsoever as a 

result of smart planning and construction of farms by the player. In that case the hunger 

mechanic devolves to a frustrating experience of repetition and probably should not be in the 

game anymore. Both of these observable situations keep the players from experiencing other 

content, because of the extreme negative result in case they choose to ignore this hunger 

mechanic. The need “hunger” in this example is, of course, interchangeable with any other 

need provided by Maslow’s hierarchy. For the sake of readability, all following examples will 

use this metaphor with resemblance to that assumption. 
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As characters in Dominus should actively pursue goals at all times, only one or two needs 

would not suffice to create interesting, diverse behavior. The fulfillment of needs is entirely 

optional, with the only drawback of missing out on considerable beneficial effects of high 

Happiness values. The Happiness missed out in one need can be compensated with Happiness 

from another. Needs from higher up the hierarchy produce more Happiness, but the 

maximum amount gained from high-up needs is capped by a multiplication of current 

amounts of Happiness in lower tiers. That way the hierarchical structure of the original role 

model is kept and early-game content is not rendered entirely pointless in later game 

progression.  

5.1.1.6 Quality of Satisfaction 
In other games a simple bar shows the amount of hunger. Different sources of food fill up the 

bar to varying satisfaction, depending on the quality of the food. In this case, three apples, 

which satisfy hunger by 5, are equivalent to a fruit-cake, which satisfies hunger by 15. 

Should the acquisition of apples be a lot easier than baking a fruit-cake, the existence of the 

fruit-cake is rather pointless and the repetition in farming tons of apples increases as a result. 

To avoid this pitfall, increased quality of food in Dominus provides increased amounts of 

Happiness. Sources of food are not additive, so three apples do not add up to a fruit-cake, but 

one apple. Baking a fruit-cake, which provides thrice the Happiness, is therefore preferable. 

Needs, that are lower in Maslow’s hierarchy, scale well into later progression of the game and 

do not become obsolete. Also, this removes repetition in the assumption of “quantity over 

quality”.  

5.1.1.7 Scalable Content and Interactions 
To satisfy the characters needs and increase its happiness, the player (and the AI) needs to 

interact with the game world through an agent. The agent has functionality, that allows the 

player to do so. Exploration, as coined in Bartle’s Taxonomy, can play a big part Sandbox 

Games, when players get the most satisfaction and fun out of the possibilities and content 

provided by the game. It is sensible for developers to provide fresh content on a regular basis 

to keep the game novel and intriguing. At this point, it is important to plan out the structure 

of the game environment, depending on the games content in terms of breadth and depth. It 

is not uncommon for naive developers and players to mistake the game’s breadth for its 

depth. While a broad variety of food, like an apple, a banana and a pear, can seem to be a lot 

of content, it is essentially the same basic concept. Depth, in turn, is variety in interactions 

that can be done. In object-oriented programming this is a paragon for inheritance. But there 
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are problems at hand, when considering one behavior that one sub-class of Fruit should be 

able to do, a second behavior that a second fruit can do, while a third can do both. An example: 

An Apple can be planted to grow a tree, as can the Pear. An Apple can be juggled, so can the 

Banana (and for some mystical reason the Pear can’t be juggled). So, the class Apple would 

need to inherit both behaviors from class Pear and class Banana. Next to the unintuitive 

reasoning of an apple being basically the same thing as a pear, inheritance is not capable to 

accomplish this. Usage of an interface demanding the implementation of a Juggle()-function 

in both the Banana and the Apple would lead to duplicated code. Each additional type of food, 

meaning each expansion of the game’s content in terms of breadth, demands additional 

coding.  

The Command programming pattern25 provides a solution, that scales way better for 

additional content, but requires some additional work beforehand. The theory behind the 

pattern the and actual implementation in Dominus will be explained in detail in chapter 5.3.4. 

For now, it is important to note that in Dominus characters do not have any logic exclusively 

to their own, except movement. Instead, objects in the game environment hold a list of 

Interactions, that contain the functionality the original object should be capable of. When 

applied to the example above, an Apple would hold two Interaction-objects, PlantTree and 

Juggle, while the Banana would only hold the Interaction Juggle and the Pear would only hold 

the Interaction PlantTree. Should some developer decide for the Pear to be juggled as well, 

only the Interaction Juggle would be needed to be placed in the list of possible Interactions 

held by the Pear. The same way, a tree, a refrigerator or car could be juggled as well, without 

the need for extra code. 

This comes back to the theory of depth and breadth: Filling the game with content in terms of 

breadth is especially simple, as functionality can be easily assigned to new objects by usage of 

already existing Interactions. Interactions can be seen as a measure for depth, as more 

functionalities mean more different things to do, which means more depth. Assuming a 

business environment for a commercial production of Dominus, this is highly advantageous 

when considering that in terms of breadth, no programmer is needed. Not only can dedicated 

content creators fill in a variety of objects, but also a possible fanbase can influence the game 

by adding or modifying content, e.g. via the Steam Workshop. Moreover, programmers have 

the time to work on the game’s depth. 

                                                           
25 Nystrom, Robert. “Game Programming Patterns” 2014. 
http://gameprogrammingpatterns.com/command.html Accessed Aug. 2018 
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The decision to employ the Command pattern, with objects in the game world generating the 

Interactions, has impact on the AI as well.  

5.1.1.8 Additional Features 
Next to the core features already mentioned, there are mechanics in Sandbox games, that are 

typical for the genre and that Dominus should include at some point to make it a full, viable 

product. These include an inventory, so characters can collect and carry items for later usage. 

Also typical is crafting-system to combine items to give them greater value. Equipment is 

similarly common, which are items like clothing or tools, that enhance a character’s 

performance and thereby create a sense of progression. 

Other mechanics are needed for Domination to be viable. With just a single character to teach 

there would be no point in letting him lose on his own, while the player just watches. The 

creation and maintenance of an ecosystem, in form of a small town ranging from three to 30 

inhabitants, gives the player ample opportunities to assign various characters to specific tasks. 

Opposing towns, controlled entirely by AI, give the player a measurement of his own 

performance and opportunities to interact with them aggressively or cooperatively, in forms 

of war or trade. 

To give an edge to the need-mechanic and the aforementioned townsfolk, adjectives can 

change the importance of certain needs specifically to an individual character. An example 

would be an ascetic character, which halves the Happiness from satisfaction by food sources, 

but doubles the time until the satisfaction diminishes, or a gourmet being the opposite. Also, 

attributes like strength, agility or intelligence can further diversify the behavior of the 

characters, as already mentioned in the warrior and librarian examples. Social interaction 

between characters with a long-term effect on their behavior towards each other would round 

the experience of the game to a really lifelike one. 

While all these mechanics are well beyond the scope of this thesis, it is interesting to keep 

them in mind when creating the code structure of the game and underlying architecture of 

the AI. Should the prove of concept for Imitation Learning in the prototype of Dominus prevail, 

these mechanics would be the next steps to take. 

5.1.2 Content of the prototype  
A project with a magnitude of what is suggested above can take years to be completed to a 

degree, that would satisfy the demands of a commercial market. A much simpler prototype 

will suffice to show the capabilities and limitations of Imitation Learning. As Occam’s Razor 

states, things should not be made more complicated as they need to be. For Dominus this 
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means that only two needs, hunger and sleep, will be enough to show the concept of needs 

and Happiness. Also, the depth and breadth of items is reduced to only two items, apples and 

logs of wood, to show resources that either fulfill a need or can be utilized as building and 

crafting material. They can be picked up and carried in a character’s inventory. Two characters 

are enough to improve and compare performances of the AI but will not allow for any social 

interaction. Characters will act in a confined space on a grid. The grid allows a pathfinding 

algorithm to efficiently work. The concept of skills can be proven by a single skill, WoodCut, 

which is needed to chop down trees. Two structures, trees and houses, are enough to provide 

the resources and to allow the fulfillment of sleepiness need. The prototype has 

implementations of two architectures of artificial intelligence, Imitation Learning and Utility-

based AI. The former is needed to provide the learning capabilities, while the latter will be 

used as a teacher for the Imitation Learner and as an opportunity to compare performances. 

5.2. The Paper Prototype 

 

Figure 3 - The Paper Prototype 
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Creating a paper prototype helps a lot to come to conclusions about promising designs early 

in development. Lining out the rules so other players can understand is beneficial for clarifying 

all circumstances of the game. Should a player be confused about the rules, it is a good 

indicator for some mechanic not being correctly understood. When some rules are not used, 

then the design might just be not that interesting, in terms of fun and necessity. The goal for 

players in this paper prototype is for players to build one house for each character. There can 

be up to four characters participating. 

Action Points (AP) indicate what time an action takes to perform. This makes it possible to 

map time scales of a real-time game to a turn-based board game. They are marked with dice 

on character’s sheet. Each character starts out with six AP. This number can be increased by 

satisfying one or both of the needs hunger and sleepiness. When an action is performed to 

satisfy a need, it stays satisfied for the next three rounds. As more AP means more actions to 

be performed each round, it shows the speed of which the character moves through the game 

world. The amount of AP is calculated at the beginning of each turn:  

6 + Happiness from satisfied hunger (0-3) + Happiness from satisfied sleep (0-3) = 6-12 AP 

A character can perform the following actions:  

• Move a character by one space (1 AP) – no diagonal movement 

• Consume an apple (1 AP) 

• Sleep in a house (3 AP) 

• Pick up an item (apple or log of wood) (1 AP) 

• Drop an item (1 AP) 

• Pass on an item (1 AP) 

• Start building a house (2 AP, 2 logs of wood) 

• Improve a building (1 AP, 1 log of wood) 

• Plant a tree (1 AP, 1 apple) 

A character needs to stand next to the field where an action is to be performed on. A house 

needs a collective of 7 AP and 7 logs of wood invested, before a character can sleep there. A 

tree needs 3 rounds before it can grow an apple. When there is no apple on a tree at the 

beginning of a round, the tree starts growing an apple that will be available to characters at 

the beginning of the subsequent round. A character can carry a total weight of 6, while apples 

weigh 1 and logs of wood weigh 2.   
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The paper prototype showed that the content outlined with Occam’s Razor was enough to 

pose interesting problems for players to solve. Most of these problems revolve around 

calculating of movement and distances to increase efficiency, planning placement and number 

of trees and houses and managing the limited inventory, while maximizing the AP for following 

turns. For example, carrying 3 logs of wood can have the risk of losing the benefits from 

satisfied hunger, but the construction of the first house can be completed after this one trip. 

Carrying only 2 logs of wood, but also taking 2 apples as well, guaranties the safety of 3 

additional points, but the satisfaction of sleep will have to wait for an additional trip to the 

nearest trees and back. The more efficient solution depends heavily on the placement of trees 

and the construction site. The paper prototype made it possible to predict suitable values for 

various data in the game as well, e.g. the number of trees per character at the start of the 

game. 

Several playtests indicated that a similar setup of the actual implementation of Dominus in 

Unity would provide interesting problems to an artificial intelligence. Although the imitation 

of player behavior is paramount in the Dominus prototype, the design of the Utility-based AI 

can benefit from observation during playtesting the paper prototype as well.  

5.3. The Underlying System 
Careful consideration was important prior to programming a vertical slice of Dominus in form 

of a playable prototype. As programming AI can be confusing and, at some points, hard to 

debug for odd behaviors, it is paramount to have clean game code. It was not uncommon for 

tests to be rendered utterly useless, when a bug in the game code allowed actions that the AI 

would exploit mercilessly. On the other hand, some bugs made the Machine Learning agent 

completely blind in a training session that was running for over six hours, the error being a 

division of integers ( 8 / 16 = 0 ) instead of a division of floats ( 8f / 16f = 0.5f). Therefore, a 

sustainable architecture was necessary to keep the code clean at all times and to provide 

opportunity for an ongoing production of Dominus beyond the prototype and this Bachelor 

thesis. The following sections will outline the most important aspects of the architecture. 

 

5.3.1 D_ITargetable – D_Character, D_Structure, D_Item 
The main components of the game environment all implement the Interface D_ITargetable. 

These components are D_Character, D_Structure and D_Item. All objects, which a character 

should be able to interact with, fall into one of these three classes. The data provided for these 

classes are stored in ScriptableObjects, namely D_StructureData and D_ItemData, and is 
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loaded to the object on game start or when a new object of the type is created. So, ideally, 

only three prefabs of the classes D_Character, D_Structure and D_Item would be stored 

centrally in a singleton D_GameMaster to be instantiated and passed the according data. This 

greatly reduces chaos with handling and changing multiple prefabs and improves usability, 

especially for non-programming developers, as they can create new objects within the Unity 

editor without touching any code. 

The D_ITargetables are mainly used in two systems: Interactions (see 5.3.3 D_Interaction) and 

the grid, including pathfinding (see 5.3.4 D_CharacterControl). Otherwise it only stores and 

handles temporary data, as permanent data is stored in the according ScriptableObject and 

logic is done with Interactions. 

It is important to note, that there are exceptions to this approach, mainly for time constraint 

reasons: First, there is no D_CharacterData as of yet. Because the D_Character with his Skills, 

Inventory and Maslow’s is more complex, it had no clear-cut line to what is simply data and 

what might still change during development. In an ongoing production the interchangeable 

information would be stored in such a data class as well.  

Next to D_CharacterData there is another exception, that is not by design, but for the lack of 

time resources: D_Tree and D_Fruit, introduced early in development, inherit from 

D_Structure and D_Item respectivly. They handle the creation and visual growth of apples. 

This does not fit the ideal of having only three final classes with only the data classes changing 

the appearance and behavior of the object. A better approach would be to have logic specific 

to an object run on the ScriptableObject data class, or with repeatedly called D_Interactions. 

Figure 4 – Scene View of the running Prototype 



21 
 

5.3.4. D_Interaction 
As already stated in chapter 5.1.1.7, Interactions are the most significant part in terms of game 

logic. Here, all the magic happens to determine the effects one object in the game world has 

on another. Specifically, only D_Characters can impose Interactions on other D_ITargetables. 

There are currently eight Interactions in Dominus that handle this: 

Name Description 

Consume The character moves to the consumable item. After the interaction 

time has passed, the apple gives the OnConsumptionMaslow to the 

character and is destroyed. 

WoodCut The character moves to the tree. After the interaction time has passed, 

dice equal to the characters skill in WoodCut are rolled. For each 

success (rolled number / 4 rounded down) the tree subtracts 1 from its 

integrity. When the integrity reaches 0, the tree is destroyed and a log 

of wood is instantiated. The interaction repeats until the tree is 

destroyed or the player aborts the action.  

Use(Sleep) The character moves to the house. After the interaction time has 

passed, the house gives the OnConsumptionMaslow to the character. 

PickUp The character moves to the item. After interaction time has passed, the 

item is stored in the character’s inventory. 

Drop The item is removed from the characters inventory and placed on a 

random adjacent grid node. 

BuildHouse Three logs of wood are removed from the inventory. After interaction 

time has passed, the character moves to a random adjacent grid node. 

The complete house is instantiated on the grid node the character was 

originally standing on. 

PlantTree One apple is removed from the inventory. After interaction time has 

passed, the character moves to a random adjacent grid node. A tree is 

instantiated on the grid node the character was originally standing on. 

OpenUI The state of the GUI is set to what corresponds in mWindow.  
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Figure 5 - Creation of an Interaction Data Object 

 

 

5.3.5.1. Implementation and Command Pattern 
The Command pattern, as described by Robert Nystrom, means “[...] taking some concept and 

turning it into a piece of data – an object – that you can stick in a variable, pass to a function, 

etc. [...] it’s a method call wrapped in an object.”26 The concept is the Interaction. To avoid 

unnecessarily cluttering the unity inspector, D_Interaction derives from ScriptableObject. The 

D_Interaction objects reside as assets in the Unity project folder and can be easily created in 

the Unity editor with the Create-button. 

D_Interaction serves as base-class for all logical implementations, e.g. D_InteractionConsume. 

D_Interaction has a virtual function “ExecuteInteraction([...])”, that will be requested by a 

D_CharacterController, which passes the acting D_Character as “subject” and the desired 

D_ITargetable ”target”. All child-classes override this function to do with both subject and 

target as specified in their design. Any D_interaction, that an object should hold, is stored in a 

list of Possible Interactions inside the data object assigned to a D_ITargetable, as described in 

5.3.3. After the logic has been implemented, only minimal setup is required to get the 

anticipated behavior running: The D_Interaction needs a name, that is displayed to the player, 

a Skill, should the logic demand a skill-check as in WoodCut, and most importantly Restriciton 

Flags, which determine circumstances for when and where and by whom the D_Interaction is 

allowed to be displayed and/or executed. These circumstances include, whether the target is 

in the game world or resides in an Inventory, or whether the D_Interaction may be called only 

by a D_Character on himself (as in OpenUI) or by the Dominator (see 5.1.1.4)  

                                                           
26 Nystrom, Robert. “Game Programming Patterns” 2014. 
http://gameprogrammingpatterns.com/command.html Accessed Aug. 2018 
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Figure 6 - Setup of Interactions in ItemData 
 

 

5.3.5.2. Sequence of Interactions 
When a D_CharacterControl requests execution of a D_Interaction, there is a strict sequence 

of steps that follow next. For example, the AI decides the best option would be to consume a 

close-by apple, it would pick the reference to the D_InteractionConsume and would call 

ExecuteInteraction() on it passing the D_Character as subject and the D_Item (the apple) as 

target. D_Interaction then starts its coroutine on the subject, as Coroutines cannot be started 

on classes, that derives from ScriptableObjects. The content of the coroutine depends on the 

purpose of the D_Interaction, but always follows the same structure.  

The first phase of a coroutine is moving the subject to the target. The coroutine, e.g. 

Consume(), will first instruct the static A_Pathfinder to calculate a path from the subject to 

the target with the Coroutine TryPath() and will then remain dormant. When the A_Pathfinder 

is done calculating, it starts another coroutine MovePath() on D_CharacterControl passing a 

chain of waypoints and then waits for the D_CharacterControl to complete the movement. 

When the movement is done, A_Pathfinder finishes with its coroutine TryPath(), which signals 

the original coroutine Consume() to continue.  

After waiting for the animation of the character for a time depending on D_Characters 

Interaction Speed, the coroutine carries out the code as specified in its design. In case of 

Consume() this means the Apple being destroyed and a Maslow being instantiated for the 

D_Character. When that is done, FinishInteraction() performs some cleaning and the 

D_Interaction is completed. 
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The D_Interaction can be finished early during movement and during animation, mostly due 

to the player interrupting it, but also when the calculated path is being blocked or when the 

target was unexpectedly destroyed before the interaction was completed. An internal State 

Machine in the D_CharacterControl keeps track of the current state of the interaction.   

5.3.4.3. User Interface 
The player interacts with the game world by clicking on a D_ITargetable in the world once, 

which prompts interaction wheel. The wheel displays all interactions, which are available at 

the moment. When the player picks one, the corresponding interaction sequence is issued. 

 

5.3.5. D_CharacterControl 
D_CharacterControl is the main component to handle movement of any character. A state 

machine keeps track of the current status of movement. The D_CharacterControl can be ready 

to await new instructions, can be currently moving, can be done with the last move instruction 

or can be currently acting, which means waiting for a D_Interaction to finish its logic after 

movement is complete. Movement and acting can also be interrupted when the player 

decides to do another action instead, or when the interaction becomes impossible, e.g. the 

path gets obstructed or the targeted object becomes unavailable. 

 

5.3.5.1 Movement, Grid and Pathfinding 
The agents in the game have to find walkable paths to a desired location without bumping 

into other entities in the world or ignoring walls or pitfalls. Various pathfinding algorithms 

make this possible. In Dominus the A-Star algorithm is utilized to find a correct path from one 

location to the next. In order for the algorithm to work, some form of topology is required. 

The navigation meshes provided by Unity are problematic, as they cannot easily adapt to 

Figure 7 - Graphical User Interface in Dominus 
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changes in the environment, like a new tree being planted or a house being built, which would 

need a recalculation of the navigation mesh.  

Instead a grid of nodes (A_Grid) was used to place entities in the game world. Nodes always 

have the same distance to each other in width and depth. Height of a node is calculated with 

samples of the heightmap of the Terrain. The number of nodes needed depends on the 

desired distance of nodes and the width and height of the Terrain. A_Nodes can be occupied 

only be a single D_ITargetable at a time. The A_Pathfinder uses these nodes to create 

waypoints, which hold reference to the A_Waypoint last visited and the current A_Waypoint. 

They also contain whether the movement is diagonal and if the node contained is the goal. 

When the A_Pathfinder starts the coroutine MovePath(), it passes a chain of A_Waypoints, 

that the D_CharacterControl will follow one A_Waypoint at a time. For convenience, also the 

direction of the movement is stored in a given A_Waypoint as well. 

5.3.5.2 D_MLAgentsControl 
This child-class of D_CharacterControl is an additional security layer before the agent can 

interact with the game environment. A character controlled by the machine learning 

algorithm can only request an interaction instead of directly issuing it. A sanity check is made 

prior to execution of any D_Interaction.  

5.3.5.3 D_PlayerControl and D_UtilityControl 
Before the MLAgents Toolkit was implemented, two child-classes of D_CharacterControl 

would control decision making process and behavior of any given character for the player and 

the Utility-based AI.  

As can be seen later (in 5.4.X.) the information originally produced here, needs to be funneled 

through the MLAgents AI and translated in terms it can understand, in order for it to learn 

from the actions. So, D_PlayerControl and D_UtilityControl control have been deprecated and 

their logic transported to D_DecisionPlayer and D_DecisionUtility (see 5.4.2.) 

5.3.6. SOS_Level 
For the purpose of automated content creation, as suggested in 5.1.1.1., some means of 

saving created content is necessary. Additional grid space adjacent to the original grid was to 

be created by the Imitation Learner, which would use hand-crafted Level Designs as a Teacher. 

Due to time constraints the class SOS_Level for saving the level remains with limited 

capabilities. The functionality relies heavily on Unity’s JsonUtility package and wraps any 

D_ITargetable in the Level as lists of strings, which are then serializable into a JSON-format. 
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5.4. Artificial Intelligence 
Decision making processes in games can have various forms of architecture. Some of these 

perform well with one situation but does worse in another. Nonetheless, they all act on the 

same principle: Internal and external knowledge is fed into the process and the decision maker 

requests an action, which changes the internal and external knowledge.  

 

Some of the most common architectures are summarized in the counter-part of this Bachelor 

thesis, the research project titled “Comparing Approaches to Game AI under Consideration of 

Gameplay Mechanics”. What is not referenced there are two approaches to Game AI, which 

will be debated in the following Chapter: Utility-based AI and Imitation Learning. 

5.4.1. Utility AI 

5.4.1.1. Concept 
Utility is a measure of relative satisfaction as a result of actions.27 It differs from hard value, 

because it can change according to the agent and its current and future situation. An example: 

The value of a 20€ bill is what it is written on it, which is 20€. When such a bill is lost by a poor 

person, he will probably go out of his way to trace back his steps and find the money. Even 

though the value is the same, it means a lot to the poor person. The other way around a multi-

billionaire would probably bend over to reach for the 20€ bill next to his feet, but probably 

would not indulge in a bigger investigation. This one bill means a lot less to the rich person 

than it does to the poor one. Or in other words, the poor man has high marginal utility of the 

20€ bill, while the rich person has low marginal utility of the 20€ bill. It is important to look at 

the margin of utility, as it shows how big the impact of the according action might be. 

                                                           
27 Mark, Dave. Behavioral Mathematics for Game A., Charles River Media, 2009, p.111 

Figure 8 – Decision Making Schematic* 
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As shown in the example, the utility of an object depends on the situation of the subject. 

Oftentimes these situations contain more information, which is important to make a decision, 

like the distance between subject and object, the amount of satisfaction the action might give 

or the relation to other possible actions. 

Utility-based AI scores each potential action in the game based on a combination of an agent’s 

current needs and the ability of that action or item to satisfy that need. The agent then uses 

an approach common in utility-based methods and constructs a weighted sum of the 

considerations to determine which action is “the best” at that moment. The action with the 

highest score wins.28 

The agent Sensors to perceive the game environment and to successfully determine the action 

scores. Each sensor checks a single value in the game world, like the distance between two 

entities or the current amount of health points. This data is then normalized and processed 

by a Utility-function in mathematical graphs of various shapes. The outputs of those functions 

can be combined in other utilities. This makes it possible to bias some information or groups 

of information, which makes them more or less important to the resulting action score. The 

resulting action can be a pre-defined sequence of actions. 

 

                                                           
28 Mark, Dave. “A Culinary Guide”. Intrinsic Algorithm, 1. Nov 2012  
http://intrinsicalgorithm.com/IAonAI/2012/11/ai-architectures-a-culinary-guide-gdmag-article/ 
Accessed Aug. 2018 

Figure 9 – Utility-based AI Scoring Schematic* 
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5.4.1.2. Implementation 
In Dominus a Utility-based Brain creates D_AI_Actions for each potential D_Interaction, that 

is placed on D_ITargetable in the game environment. Then D_DecisionUtility calls Test() on 

each D_AI_Action, that was created in this manner, passing the subject (the issuing agent) and 

the target as parameters. The test includes some sanity-checks, but mainly calls 

ComputePoints() of the D_AI_Utility referenced in D_AI_Actions. 

The connected D_AI_Utility can then either be a D_AI_UCombine, which combines and weighs 

two other utilities connected to them, or can be a functional D_AI_Utility, like D_AI_ULerp or 

D_AI_URandom, which calls RunSensor() on a given D_AI_Sensor.  

The information returned from the D_AI_Sensor, a single float value, is then recursivly 

combined and weighted throughout the Utility tree. The value returned by the top-most 

D_AI_Utility is thereby the action score and is saved in the tested D_AI_Action. 

The decision-making process of the Utility-based AI is finished when all D_AI_Actions are 

scored and the D_AI_Action with the highest score is selected. 

In order to employ the Utility-based system as a teacher for the Imitation Learning process, 

the information saved in the selected D_AI_Action has to be translated into terms the 

MLAgents system can understand and is able to reproduce. The former class D_UtilityControl, 

that would issue the selection process of the Utility-based system, was derived from 

D_CharacterControl and was thereby working parallel to the MLAgents system. But the inner 

workings of the MLAgents Toolkit requires the decision-making process to happen in a very 

specific spot. That is why D_UtilityControl had to be deprecated and its logic moved to a class 

D_DecisionUtility, which derives from a class provided by the MLAgents Toolkit, Decision.  

For time constraint reasons and for the lack of necessity in terms of testing, the prototype 

contains only the most basic behavior. The observable behavior of a Utility-based agent entails 

only to find the nearest Apple and consume it. The Utility needed for this is a simple linear 

interpolation, that translates the output of the Distance Sensor into utility values. The problem 

to find the closest Apple was sufficiently challenging to the Imitation Learning algorithm, so 

no further functionality was necessary. 
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5.4.2. Machine Learning Agents Toolkit for Unity 

5.4.2.1. Concept 
Unity’s Technical Evangelist Alessia Nigretti describes Machine Learning as “[...]an application 

of artificial intelligence that provides a system with the ability of learning from data 

autonomously, rather than in an engineered way.”29 So, instead of a predefined algorithm 

determining the best action for the agent with given inputs, the Machine Learning agent is 

given a vector of inputs to find patterns and to predict a vector of outputs. When outcome of 

the prediction is wrong, the MLAgent adjusts to produce more promising prediction. This 

input-output mapping is repeated thousand-fold to optimize it towards the desired result. 

Unity’s Machine Learning Agents Toolkit provides two systems, each with its distinct use case, 

namely Reinforcement Learning and Imitation Learning. 

Reinforcement Learning, or Proximate Policy Optimization (PPO), “[...] uses a neural network 

to approximate the ideal function that maps an agent can take in a given state.”30 

A neural network resembles a nervous system. It is structured in neurons, which are divided 

into layers. The Input layer contains all relevant data from the game environment, while the 

Output layer contains the information calculated by the Hidden layers based on the Input 

                                                           
29 Nigretti, Alessia. “Using Machine Learning Agents Toolkit in a real game: a beginner’s guide” Unity Blog,  
11. Dec. 2017. https://blogs.unity3d.com/2017/12/11/using-machine-learning-agents-in-a-real-game-a-
beginners-guide/ Accessed Aug. 2018 
30 “Training with Proximal Policy Optimization” Unity Technologies. 
 https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Training-PPO.md Accessed Aug. 2018 

Figure 10 – Neural Network Schematic* 
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layer. Connections between neurons are weighted, which indicate the strength or weakness 

of the connection. Whenever the agent performs an action, the rewards and punishments, 

which are set by the developer, are fed back into the process. Based on the feedback the 

algorithm adjusts the weights between connections in a way, that reproduces outputs with 

desired behavior and prevents outputs with faulty behavior. 

Imitation Learning, or Behavioral Cloning, “[...] uses a system based on the interaction 

between a Teacher agent (performing the task) and a Student agent (imitating the teacher).”31 

Different from Reinforcement Learning, Imitation Learning does not work with a 

reward/punishment mechanism. Instead, the Teacher agent provides samples to the Student 

agent, which contain input data and output data. Goal of the Student agent is to reproduce 

similar outputs with any given similar input. This behavior comes close to what is known as 

Supervised Learning, where samples, like pictures of bees and cars, are labeled with the 

correct answer and the Supervised Learner has to predict the label of any given sample. In 

context of a game, the picture resembles the game state, while the correct label is an action 

by the Teacher, e.g. a button press. When the prediction is wrong, for example when in a given 

situation the Student agent would turn left but the Teacher agent turns right, the weights of 

the connections in the neural network are adjusted again to account for the error. 

The science and mathematical calculations behind neural networks are vast and complex. An 

extensive dive into the matter would require prolonged studies and is therefore beyond the 

scope of this Bachelor thesis. But Unity’s technicians realized the inaccessibility of the matter 

as well, which is why they created the MLAgents Toolkit in the first place. That way, developers 

of wide ranges of skill levels can employ such a system without needing a degree in scientific 

studies. Compared to what a deep understanding of the algorithm entails, the implementation 

of the MLAgents Toolkit is relatively simple. 

Unity’s Machine Learning Agents Toolkit is built on-top of the open-source library TensorFlow, 

which contains the algorithms and is responsible for the training of agents, but does not 

provide a native C# API. Therefore, it runs outside the Unity Editor and is connected to it via 

an External Communicator. For the purpose of this Bachelor thesis the inner workings of 

TensorFlow are treated as a black box. The main components of the toolkit are the Academy, 

Brains and Agents.32 

                                                           
31 Nigretti, Alessia. “Imitation Learning in Unity: The Workflow” Unity Blog, 24. May 2018. 
https://blogs.unity3d.com/2018/05/24/imitation-learning-in-unity-the-workflow/ Accessed Aug. 2018 
32 Juliani, Arthur. “Introducing: Unity Machine Learning Agents Toolkit” Unity Blog, 19. Sep. 2017. 
https://blogs.unity3d.com/2017/09/19/introducing-unity-machine-learning-agents/ Accessed Aug. 2018 
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Figure 11 – Unity Machine Learning Agents Schematic* 

Agents correspond to the characters in the game. They are responsible for collecting 

observations and carrying out actions. Each Agent has a Brain, which make the decisions and 

issues a corresponding action based on the observations of the Agent. Several Agents can have 

the same Brain. Brains are set to one of four modes: 

• External – Action decisions are made using TensorFlow 

• Internal – Actions decisions are made using a trained model embedded into the project  

• Player – Action decisions are made using player input. 

• Heuristic – Action decisions are made using hand-coded behavior. 

The Academy conducts communication between External Brains and TensorFlow. Also, it is 

responsible for coordinating the environment for a training episode. 

 

5.4.2.2. Implementation 
The D_Academy has three important functions, that override the virtual functions provided 

by the MLAgents Toolkit: InitializeAcademy() is responsible for setting up the environment 

and is called once when the game starts. Here a terrain is picked from a list and instantiated, 

a A_Grid is set up for it and agents are being created for each brain, that should be trained. 

Additional characters, that do not require a machine learning brain, can be created as well. 

AcademyReset() is called when every active Agent reached the goal of the training scenario or 

when the step count (with each FixedUpdate() call being a step) for a training episode exceeds 

the maximum count per episode, which is set in the base class of the Academy. Here, the 

content of the current training episode is shaped by placing Trees and additional structures 

and items at random locations on the Grid. Prior to that, all remnants of the old training 

episode have to be destroyed. 
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AcademyStep() is called each step, so on each FixedUpdate() call, and can be used to 

orchestrate the environment, possibly placing additional Trees when there are not enough 

around. In Dominus nothing of the sort was necessary, though. 

 

The challenging part to implement MLAgents becomes apparent in D_Agent. AgentReset() 

prepares the agent for a new training episode when the Academy resets the environment. 

D_Agent has two major responsibilities: CollectObservations() translates all necessary 

information in the game world into terms the Machine Learning algorithm can use, which 

corresponds to the Input layer of the Brain. This means that all information has to be available 

as floating-point numbers ideally ranging between -1.0 and 1.0.  The other way around, 

AgentAction() translates the computations of the Brain, so the Output layer, to actions in the 

game. The raw output is only available as floating-point numbers ranging from -1.0 to 1.0 as 

well. AgentAction() also gives opportunity to reward or punish the Brain for its decision when 

using Reinforcement Learning. Careful considerations had to be made for setting up the 

collection of observations and the translation of the Brains output into game actions.  

 

Next to its own position on the grid, its current ready-state and its Happiness, the Agent 

considers a maximum of 50 Targetables when collecting observations. The number of 

observed Targetables can vary and is padded with zeros for any missing entity, as the 

observation vector must always contain the same number of elements.33 The properties 

important to the Agent are the Targetables’ positions and the Interactions available on them. 

The Agent only considers Interactions, that are listed to him as known. It is important to note 

that the Interactions listed as known must be ordered in a specific way to make 

D_DecisionUtility able to communicate with the Agent. The available Interactions are encoded 

in a one-hot style, so each of them has a corresponding entry in the observation vector with a 

value of either 1.0, when the Interaction is available, or 0.0, when it is unavailable.  

When the Agent knows about all Interactions included in the prototype, excluding OpenUI and 

including plain movement, the input vector has a size of 454 observations to keep track of.  

A simple version, in which only movement and Consume are available, reduces the amount to 

154 observations. This number is required to be correctly set in the Brain-class.   

                                                           
33 “Continuous Vector Observation Space: Feature Vectors” Unity Technologies. 
 https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Design-
Agents.md#continuous-vector-observation-space-feature-vectors Accessed Aug. 2018 
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The vector of floating-point numbers received by AgentAction() has a fixed size as well. A full 

support of all Interactions has an action vector of size 10. The action vector in the simple 

approach contains only 4 floating-point numbers. The first and second number always 

corresponds to normalized coordinates of a node on the grid. Should any other entry surpass 

a minimum threshold, the corresponding Interaction is tested for being viable for a possibly 

given Targetable on the node. When the Interaction is viable, it executed as stated in 5.3.5.2. 

Otherwise another decision is requested from the Brain. 

 

D_DecisionUtility ignores all observations done in the Agent, and instead collects its 

information as described in 5.4.1.2. The resulting action cannot be directly executed, though. 

Instead it first has to be translated and funneled through the MLAgents system to make it 

possible for the Utility-based AI to function as a Teacher for the Brain. Therefore, an action 

vector of floating-point numbers is created containing the necessary information, that is 

instantly translated back into an Interaction within AgentAction(). D_DecisionUtility is placed 

on the same GameObject as the Brain and requires the Brain to be set to “Heuristics” mode. 

D_DecisionPlayer is not implemented due to time constraints and complications in the 

implementation. As D_DecisionUtility suffices to show the Imitation Learning capabilities, this 

functionality is only a nice-to-have. For purposes of future presentations, this class will be 

implemented in the aftermath of this thesis. 

6. Evaluation 
6.1. Choices in technology 

6.1.1. Choices in the prototype architecture 
There are four complicated, high-maintenance systems in the prototype: 

• Interactions (Command Pattern) 

• Utility-based AI 

• Pathfinding 

• Machine Learning Agents 

A simpler prototype would have sufficed to test the Imitation Learning system, as it would 

have been less prone to bugs. On the other hand, there would have been less insight won, 

were the prototype as simple as the examples, that are shipped with the download of the 

Machine Learning Agents plugin, e.g. the Banana Collector. These insights include problems 

with the amount of observations and actions, that an agent can handle and the limitations in 

handling indirect controls of the agent. 
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6.1.2. Choice in Artificial Intelligence 
While the thesis was originally planned to use only Utility-based AI, it became clear that to 

make it work in a learning fashion a whole new system, research and development would have 

been necessary to create similar results to the Imitation Learning algorithm, which simply was 

not feasible. The technology of Imitation Learning was only presented and released late in the 

development of the prototype. A lot of code had to be refactored to accommodate to the 

requirements of the new technology. Also picking up the rather complicated technology while 

working on the prototype stretched the time resources. 

It was the right choice to switch from Utility-based AI to the Machine Learning system, but the 

prototype does not show the work invested in the former. The Utility-based AI system was not 

explicitly needed for Imitation Learning to work, but it was very convenient for training 

sessions that lasted for hours.  

The switch between both systems also brought up issues, that would not have been as obvious 

in case of the prototype being cut only to the requirements of Machine Learning. 

6.2. Direct control versus indirect control 
There is a difference between direct and indirect control of characters in the game world. 

Direct control means that the player pushes the “Walk Left”-button and the character walks 

to the left, relative to its own position. With indirect control, on the other hand, the character 

is given a position, that it should walk towards, that can be close to him or far away. It then 

calculates a path, which can initially lead the character in the opposite direction to avoid 

collision with objects in the path. Good examples for the difference between the two are the 

PC version of Diablo3 [Blizzard. 2012], where the of the game utilizes indirect control with the 

player clicking where the character should go, and the console version, where the game needs 

to accommodate to the input with joysticks with the player controlling the character directly.  

Utility-based AI does not explicitly require indirect control to properly function, but it is 

common to use it in such a way. When the objects in the game environment produce the 

actions available to the character, the decision making system only has to decide between the 

best actions at the time. The movement and pathfinding system can be easily separated from 

the decision making process. 

Any examples shipped with the Machine Learning Agents Toolkit rely on direct control. It is 

not explicitly stated that indirect control is not possible. The Player-mode of the Brain suggests 

that only direct control is intended, as there can be buttons mapped to conveniently connect 

the Machine Learning Agents system with Unity’s Input system.  
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The workaround found in Dominus is to trick the system in believing the player input to be 

some kind of a version of a Brain set to Heuristic-mode. That is why there is D_DecisionPlayer, 

which is supposed to work similarly to D_DecisionUtility. Due to time constraints, this solution 

is only theoretical and still requires a proof of concept. 

6.4. Keeping track of all Targetables 
With Utility-based AI keeping track of all Interactions is not a problem, in theory. The number 

of Interactions listed for scoring can range from only a few to hundreds and thousands. When 

there is a new Interaction to keep track of, it is simple to add it to the AI system compared to 

what is necessary with Machine Learning. The only limitation for Utility-based AI is efficiency 

when the scoring of Interactions relies on a lot of Utility-functions. This can be optimized by 

limiting the Targetables to keep track of to the closest ones. 

With Machine Learning there are problems that can not be fixed as easily. The Input and 

Output layers are required to be set to a fixed size. This is why padding the Input layer with 

zeros was necessary to have potential room for additional Targetables to keep track of. The 

suggestion by the developers of the Machine Learning Agents Toolkit of Interactions being 

kept in a one-hot style poses another problem: Next to the maximum amount of trackable 

Targetables being fixed, also the number of trackable Interactions cannot easily be increased. 

When there is a new Interaction for the Machine Learning System to recognize, the Input 

vector has to be resized. This requires a new Brain to be trained from the ground up. 

Obviously, this is not feasible for a game design as suggested with Dominus, where the game’s 

content, including Interactions, should grow on a regular basis. 

Another workaround would have to be found to join the benefits of Imitation Learning with 

the necessity of growing content. 

6.5. Testing Proximate Policy Optimization 
Reinforcement Learning is not a major concern for the prototype, because the Agents were 

never meant to play the game in an optimal way, but in a human way. Nonetheless, testing 

the game environment with only one Agent, that uses Proximate Policy Optimization (PPO) 

for training, gave insight over possible misconceptions and bugs in the code. 

It is interesting to note that punishing the Agent when it tried to issue an impossible 

Interaction resulted in the Agent not trying to get to the closest Apples, but instead made sure 

to walk long distances to not be forced to make another decision, which was probable to 

punish it again.  
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6.6. Testing Imitation Learning 
The example of Antigraviator shown in Unity’s presentation for Imitation Learning claims the 

technology to be able to imitate player behavior to being undistuingishable within minutes. 

The implementation of Imitation Learning in Dominus comes nowhere close to that. After six 

hours of training the observable behavior of the Student Agent still shows it standing still for 

large amounts of time, even though the task to solve was simplified significantly to only find 

and consume the nearest Apple. There are many possible reasons for this:  

One possibility is for the Imitation Learner not being able to handle huge amounts of 

information in the Input layer. The Antigraviator-example needs 20 observations to function. 

In comparison, Agents in Dominus need to keep track of 454 observations. This highly 

ambitious number could be reduced to 94 observations by limiting the trackable Targetables 

to the 10 closest ones. This would render the technology unusable for a game like Dominus, 

where many and far away objects in the game have importance to the character’s behavior. 

With the length of the training session in mind, this explanation seems implausible. 

Another more plausible reasoning is that the Imitation Learner is not only recording the 

behavior of the Teacher when it actually makes a decision, but also when the Teacher is 

moving or acting with an object. The implementation in Dominus made sure to make use of 

the RequestDecision()34 functionality provided by the toolkit. This essentially means that 

computations for the Teacher Brain are only made when necessary, so after another 

interaction is completed when the Agent needs something else to do. This explanation can be 

retraced to the observable behavior of the Student Agent, where the action vector is changing 

in intervals ranging from a few seconds to several minutes. A possible solution would be to 

start recording the Teacher’s behavior prior to any decision making and to pause recording 

instantly after an Interaction is issued and the Agent starts moving. Due to time constraints 

this possible solution was not investigated. 

 

 

 

 

 

                                                           
34 “On Demand Decision Making” Unity Technologies. https://github.com/Unity-Technologies/ml-
agents/blob/master/docs/Learning-Environment-Design-Agents.md#on-demand-decision-making 
Accessed Aug. 2018 
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6.7. Necessity of External communicator 
The need for an external communicator and the preparations required to set up the Machine 

Learning environment, including installing Python, makes the Machine Learning Agents Toolkit 

unsuitable for use in a commercial version of Dominus. This could only be fixed, if it was 

possible to ship the TensorFlow-part with the game’s executable. Whether the developers of 

the toolkit plan on making this possible, is currently unknown. With the completion of this 

Bachelor thesis, there are strong intentions to make a request towards Unity’s development 

team to have a look into possibilities of integrating the Machine Learning Agents Toolkit fully 

into the Unity Editor.     

7. Future Work and Outlook 
The investigations done in this Bachelor thesis are far from covering all aspects of Imitation 

Learning. The pursuit of a solution to the initial problem gave insight to what is important 

when considering Machine Learning for a game. The problems appearing throughout the 

development are intriguing. Further research, creative workarounds and alternative solutions 

are well within reach for additional work.  

One aspect of possible future work is deepening the understanding of hyperparameters to 

boost the efficiency of the learning process. 

A bigger impact on the implementation of Machine Learning is expected with further 

investigations and development in the setup of the environment, the observation vector and 

the action vector. 

The most interesting idea, though, is to completely rework the decision making system to 

meld the Utility-based AI and the Machine Learning algorithm into a single system with 

distributed responsibilities for each of them. Instead of using Utility-based AI as a Teacher to 

create basic behavior and Machine Learning fully reproducing the behavior making the Utility-

based AI obsolete in the long run, a cooperation would emphasize the strength of both 

systems. In this idea, the Utility-based AI is responsible for collecting all Interactions while the 

Machine Learning algorithm becomes important only for scoring the collected Interactions, 

shifting the weights in the Utility-mechanism to accommodate for the player’s choices, when 

the Utility-based AI would have chosen a different action. 

As can be seen, there are many possibilities for future research of Machine Learning within 

the context of a game development. 
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