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AGENDA

Introduction

Porting
• Memory management
• API of your renderer
• Pipelines, descriptors, command buffers
• Objects lifetime
• Multithreading on CPU
• Using multiple GPU queues
• Barriers
• Frame graph
• Additional considerations

Conclusion
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Introduction

Why port to Vulkan™ or DX12?
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◢ New generation graphics APIs are lower level, more explicit.

◢ Simple port won’t necessarily give you performance uplift.

◢ It opens up possibilities to optimize better and use new GPU features.

ADVANTAGES

Driver

Graphics API

Game

Engine

New APIs
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◢ multithreading on CPU

◢ using multiple GPU queues

◢ explicit multi-GPU

◢ better optimization for specific platforms

◢ less CPU overhead

◢ opportunity to improve engine architecture

ADVANTAGES
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Porting

How to port your engine?
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In the new APIs it is now your responsibility to do:

◢ memory allocation and management

◢ objects lifetime management

◢ command buffer recording and submission

◢ synchronization

◢ memory barriers for resources

RESPONSIBILITIES
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◢ Previous generation APIs (OpenGL™, DirectX® 11) manage memory automatically.

◢ New APIs (Vulkan™, DirectX® 12) are lower level, require explicit memory management.
‒ Choose right memory type for your resource.

‒ Allocate large blocks of memory.

‒ Assign parts of them to your resources.

‒ Respect alignment and other requirements.

THE CHALLENGE

MEMORY MANAGEMENT

Memory

Buffer Buffer Image
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◢ manage memory better

◢ optimize better for specific platforms (e.g. discrete, integrated)

◢ save memory by aliasing:

ADVANTAGES

MEMORY MANAGEMENT

G-buffer fill

Memory

lighting particles

G-buffer

postprocessing

helper RT

Pass

Reuse same memory
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Depending on usage pattern of your resource:

1. Frequent GPU read & write (render target, depth-stencil, UAV)
‒ Always use video memory: D3D12_HEAP_TYPE_DEFAULT / VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT.

‒ Allocate first.

2. Frequent GPU read, CPU write seldom or just initialized once (immutable)
‒ Allocate in video memory: D3D12_HEAP_TYPE_DEFAULT / VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT.

‒ Create staging copy in system memory D3D12_HEAP_TYPE_UPLOAD / VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, 
transfer from there.

‒ Place in system memory as fallback.

RECOMMENDATIONS

MEMORY MANAGEMENT



11 |    MAY 2018

Depending on usage pattern of your resource:

3. Frequent CPU write, GPU read  (dynamic)
‒ Vulkan™, AMD GPU: use DEVICE_LOCAL + HOST_VISIBLE memory to directly write on CPU and read on GPU.

‒ Otherwise, have one copy in system memory, one in video memory and make a transfer – see 2.

4. Frequent GPU write, CPU read (readback)
‒ Use cached system memory: D3D12_HEAP_TYPE_READBACK / HOST_VISIBLE + HOST_CACHED.

RECOMMENDATIONS

MEMORY MANAGEMENT
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Possible solutions:

◢ Bad: Separate allocation for each resource (CreateCommittedResource).
‒ slow, large overhead ☹

‒ Vulkan™: limited maximum number of allocations, e.g. 4096

SUB-ALLOCATION

MEMORY MANAGEMENT
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◢ Good: Allocate large (e.g. 256 MiB) blocks when needed, sub-allocate parts of them for your resources 
(CreatePlacedResource).

‒ requires writing custom allocator → Vulkan™: you can use free library: Vulkan Memory Allocator
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator

‒ making new allocations in runtime can cause hitching → do it on separate background thread

◢ Excellent: Allocate all needed memory and create all resources while loading game/level.

SUB-ALLOCATION

MEMORY MANAGEMENT

https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator


14 |    MAY 2018

If you allocate too much video memory:

◢ new allocations may fail

◢ existing allocations can be migrated to system memory → performance degradation

OVER-COMMITMENT

MEMORY MANAGEMENT
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Possible solutions:

◢ Bad: Allocate as much memory as you need, handle allocation errors, rely on system migration policy.

◢ Better: DX12: Manually control heap residency:
ID3D12Device::Evict, MakeResident, SetResidencyPriority…

◢ Excellent: Explicitly control and limit memory usage:
‒ Vulkan™: Query for VkMemoryHeap::size, leave some margin free (e.g. use maximum 80% of GPU memory).

‒ DX12: Query for available budget DXGI_QUERY_VIDEO_MEMORY_INFO, adjust to it.

OVER-COMMITMENT

MEMORY MANAGEMENT
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◢ Many renderers have DX11-style or even DX9/OGL-style API.

◢ Using Vulkan™/DX12 under same interface is not a good idea.

◢ Better to redesign engine and then port.

RENDERER API

• SetRenderState(D3DRS_CULLMODE, 
…)

• SetRenderState(D3DRS_ZENABLE, …)

• SetPixelShader(ps1)

• SetTexture(0, tex1)

• DrawIndexed()
☹
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◢ Pipeline / Pipeline State Object (PSO) encapsulates most of the configuration of graphics pipeline.
vertex format, shaders, depth-stencil state, blend state, …

◢ Pipeline object is immutable. Different combination of settings requires new object.

THE CHALLENGE

PIPELINES
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Possible solutions:

◢ Bad: Leave old interface with separate states.
Flush on draw call: hash the state, lookup existing pipeline or create a new one.

‒ bad: wait for it → hitching

‒ better: create it on background thread

◢ Excellent: Create necessary pipelines on game loading.
‒ explosion of possible combinations → limit their number, create only those really needed

‒ creation takes long time (shader compilation happens there) → parallelize

RECOMMENDATIONS

PIPELINES

• SetRenderState(D3DRS_CULLMODE, …)

• SetRenderState(D3DRS_ZENABLE, …)

• SetPixelShader(ps1)

• SetTexture(0, tex1)

• DrawIndexed()
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◢ New resource binding model – many levels of indirection.

◢ You need to predefine layout of descriptors as
VkDescriptorSetLayout / ID3D12RootSignature.

◢ You need to initialize descriptors.

◢ Keep your descriptor set layout / root signature
as small as possible.

◢ Group resources by rate of change –
per frame, pass, material, object etc.

◢ Strive to keep the most frequently changing
parameters first (DX12) / last (Vulkan).

DESCRIPTORS

sampled pixel

sampling in GLSL/HLSL

VkDescriptorSet

vkCmdBindDescriptorSets()

descriptor

VkImageView

VkImage

VkDeviceMemory

vkUpdateDescriptorSets()

vkCreateImageView()

vkBindImageMemory()
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Command Buffer / Command List keeps sequence of graphics commands.

◢ fill it – post commands to it

◢ submit it for execution on the GPU

Possible solutions:

◢ Bad: Use single command buffer. Submit it and then immediately wait for it to finish.
CPU and GPU get serialized ☹

COMMAND BUFFERS

Time

CPU

GPU
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◢ Good: Double/triple-buffer your command buffers.
Fill next one on CPU while previous is still being executed on GPU → pipelining

COMMAND BUFFERS

CPU

GPU
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◢ Better: Split frame into multiple command buffers.
‒ more regular feeding of GPU

‒ commands submitted earlier → lower latency

COMMAND BUFFERS

CPU

GPU
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There is an overhead associated with each command buffer/submit/synchronization.

◢ Limit number of command buffers.
Aim for 15-30 per frame.

◢ Batch multiple command buffers into one submit call. Limit number of submits.
Aim for 5 per queue per frame.

◢ Control granularity of your command buffers.
Submit large chunks of work.

COMMAND BUFFERS
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◢ Excellent: Record part of your frame once, submit it every frame.

◢ Excellent: Record multiple command buffers in parallel, on multiple threads.

COMMAND BUFFERS

CPU Core 0

CPU Core 1

CPU Core 2

GPU
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Most objects and data are not reference-counted or versioned by the API for usage on GPU.

◢ You need to make sure they remain alive and unchanged as long as they are used by the GPU.

◢ Includes: descriptors, contents of memory e.g. constant buffers.

◢ Double/triple-buffer them together with command buffers.

OBJECT LIFE-TIME

0

0

1

1

CPU

GPU

0

0

1

1
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Writing to mapped data behaves like you always used D3D11_MAP_WRITE_NO_OVERWRITE.
Make a ring-buffer for your dynamic data.

OBJECT LIFE-TIME

in use by GPU written by CPU
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Possible solutions:

◢ Bad: single-threaded game: while(playing) { Update(); Render(); }

◢ Better: Main thread with gameplay logic, scripting etc. + separate render thread +
some background threads, e.g. AI, resource loading.

MULTITHREADING (CPU)
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◢ Excellent: Task system
‒ Pool of persistent threads, one per hardware thread, waiting for tasks.

‒ Each frame consists of many tasks with dependencies between them.

‒ Generic, scalable architecture ☺

MULTITHREADING (CPU)
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Make use of multiple GPU queues to parallelize rendering.

◢ Graphics

◢ Async compute

◢ Transfer

MULTITHREADING (GPU)
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Async compute

◢ General computations e.g. particles.

◢ Convert fullscreen passes to compute shaders.

◢ Execute parts of the frame in async compute.
‒ preferably in parallel with geometry-intensive graphics work

‒ finish frame by doing postprocessing and Present in async compute

MULTITHREADING (GPU)
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Transfer

◢ Uploading/downloading data to/from GPU memory through PCIe®

◢ Background transfers: texture streaming, defragmentation of GPU memory

◢ Copies inside video memory:
‒ long time before the result is needed → use transfer queue

‒ result is needed immediately on graphics queue → use graphics queue

MULTITHREADING (GPU)
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EXAMPLE

MULTITHREADING (GPU)

3D queue

Compute queue ambient occlusion

shadow map (…)

postprocessing

Z pass frame1 →

PresentTransfer queue 1

Transfer queue 2

uploading constants and dynamic data

← texture streaming →

←

work for current frame

Z pass frame0

other work
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A barrier synchronizes access to specific resource.

Possible solutions:

◢ Hard: Barriers hardcoded, placed manually.
can reach good performance, but difficult and error-prone ☹

◢ Bad: Define “base state”. Always go back to this state after use.
not very efficient ☹

◢ Better: Remember last state. Transition to new state before use.
works, but still can do better ☹

BARRIERS

barrier

use as render 
target

use as sampled 
texture

barrier
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◢ Excellent: Have look-ahead of whole render frame. Find best place to issue barriers.
place barriers as early as possible before result is needed – may hide their latency ☺

◢ Most of your resources don’t need layout transitions in runtime. Only limited number does.

◢ Bad result: waiting for idle between all draw calls. Good result: everything pipelined.

◢ Batch barriers together into one call wherever possible.

BARRIERS
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◢ General, high-level solution.

◢ Describes structure of a render frame.

◢ Nodes are render passes – sequences of commands to be executed every frame.

◢ Each pass can read and write resources – e.g. intermediate render targets.

FRAME GRAPH

Depth

AO

G-buffer

SM

Scene

Shadow
mapAOZ prepass

Fill
G-buffer

Lighting
Post-

processing
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With frame graph you can easier/automatically handle:

◢ render passes
‒ determine order of render passes

‒ group them into command buffers, Vulkan™ render passes and subpasses

‒ parallelize on CPU – record command buffers on multiple threads

‒ parallelize on GPU – assign passes to hardware queues

ADVANTAGES

FRAME GRAPH

Z prepass

AO

Shadow map

Fill G-buffer
Lighting

Post-processing
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With frame graph you can easier/automatically handle:

◢ resources
‒ determine what barriers are needed

‒ find the most optimal place to issue barriers

‒ alias memory, if lifetime of resources don’t overlap

ADVANTAGES

FRAME GRAPH
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◢ Update Vulkan™ SDK regularly

◢ Update graphics driver regularly
and tell your players to do the same

◢ Use Validation Layers
‒ they don’t check everything

‒ there may be false positives (when using extensions, bugs in validation layers)

‒ but still consider each message, fix it or add to your ignore list

◢ Please do report bugs. Vulkan™ ecosystem needs your help!

1/3

ADDITIONAL CONSIDERATIONS
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◢ Make your game easy to debug
‒ Support enable/disable switches for as many features as possible

‒ Use debug markers to annotate rendering commands and give names to resources
Vulkan™: VK_EXT_debug_marker, DX12: PIXBeginEvent

‒ Integrate system for debugging driver crashes and TDR
VK_AMD_buffer_marker, …

◢ Use debugging and profiling tools, e.g.: 
RenderDoc, Microsoft PIX, Radeon GPU Profiler (RGP), etc…

2/3

ADDITIONAL CONSIDERATIONS
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◢ First stability, then correctness, then performance.

◢ Use good software engineering practices.
‒ Test early, test often, test on various GPUs.

‒ Track regressions.

3/3

ADDITIONAL CONSIDERATIONS



41 |    MAY 2018

Conclusion
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◢ New graphics APIs (Vulkan™, Direct3D 12) are lower level, more explicit.

◢ Porting your engine to a new API:
‒ requires some additional work

‒ can result in better performance

◢ There are recommended good practices, software libraries, and tools that can help you with that.

CONCLUSION
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◢ Anvil – cross-platform framework for Vulkan™
https://github.com/GPUOpen-LibrariesAndSDKs/Anvil

◢ V-EZ – cross-platform wrapper that simplifies Vulkan™ API
https://github.com/GPUOpen-LibrariesAndSDKs/V-EZ

◢ Vulkan Memory Allocator
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator

◢ simple_vulkan_synchronization – simplified interface for Vulkan™ synchronization
https://github.com/Tobski/simple_vulkan_synchronization

◢ volk – meta loader for Vulkan™ API
https://github.com/zeux/volk

◢ D3D12 Residency Starter Library
https://github.com/Microsoft/DirectX-Graphics-Samples/tree/master/Libraries/D3DX12Residency

LIBEARIES

https://github.com/GPUOpen-LibrariesAndSDKs/Anvil
https://github.com/GPUOpen-LibrariesAndSDKs/V-EZ
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://github.com/Tobski/simple_vulkan_synchronization
https://github.com/zeux/volk
https://github.com/Microsoft/DirectX-Graphics-Samples/tree/master/Libraries/D3DX12Residency
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◢ Rodrigues, Tiago (Ubisoft Montreal). Moving to DirectX ® 12: Lessons Learned. GDC 2017.

◢ Sawicki, Adam (AMD). Memory management in Vulkan™ and DX12. GDC 2018.

FURTHER READING
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Thank you
Questions?
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