John Carmack Archive - .plan (2003)

http://www.team5150. com/~andrew/carmack

March 18, 2007

http://www.team5150.com/~andrew/carmack

Contents

1 January

1.1 NV30 vs R300, current developments, etc (Jan 29, 2003)

2 February
2.1 Feb 07,2003

...........................

2

Chapter 1

January

1.1 NV30vsR300, current developments, etc (Jan
29, 2003)

At the moment, the NV30 is slightly faster on most scenes in Doom than
the R300, but I can still find some scenes where the R300 pulls a little bit
ahead. The issue is complicated because of the different ways the cards
can choose to run the game.

The R300 can run Doom in three different modes: ARB (minimum exten-
sions, no specular highlights, no vertex programs), R200 (full featured,
almost always single pass interaction rendering), ARB2 (floating point
fragment shaders, minor quality improvements, always single pass).

The NV30 can run DOOM in five different modes: ARB, NV10 (full fea-
tured, five rendering passes, no vertex programs), NV20 (full featured,
two or three rendering passes), NV30 (full featured, single pass), and
ARB2.

The R200 path has a slight speed advantage over the ARB2 path on the
R300, but only by a small margin, so it defaults to using the ARB2 path for
the quality improvements. The NV30 runs the ARB2 path MUCH slower
than the NV30 path. Half the speed at the moment. This is unfortunate,
because when you do an exact, apples-to-apples comparison using ex-

2

John Carmack Archive 3 .plan 2003

actly the same API, the R300 looks twice as fast, but when you use the
vendor-specific paths, the NV30 wins.

The reason for this is that ATI does everything at high precision all the
time, while Nvidia internally supports three different precisions with dif-
ferent performances. To make it even more complicated, the exact pre-
cision that ATT uses is in between the floating point precisions offered by
Nvidia, so when Nvidia runs fragment programs, they are at a higher pre-
cision than ATT’s, which is some justification for the slower speed. Nvidia
assures me that there is alot of room for improving the fragment program
performance with improved driver compiler technology.

The current NV30 cards do have some other disadvantages: They take up
two slots, and when the cooling fan fires up they are VERY LOUD. I'm not
usually one to care about fan noise, but the NV30 does annoy me.

[am using an NV30 in my primary work system now, largely so I can test
more of the rendering paths on one system, and because I feel Nvidia still
has somewhat better driver quality (ATI continues to improve, though).
For a typical consumer, I don’t think the decision is at all clear cut at the
moment.

For developers doing forward looking work, there is a different tradeoff -
the NV30 runs fragment programs much slower, but it has a huge maxi-
mum instruction count. I have bumped into program limits on the R300
already.

As always, better cards are coming soon.

Doom has dropped support for vendor-specific vertex programs (NV_vertex program
and EXT _vertex_shader), in favor of using ARB_vertex_program for all ren-

dering paths. This has been a pleasant thing to do, and both ATI and

Nvidia supported the move. The standardization process for ARB_vertex_program
was pretty drawn out and arduous, but in the end, it is a just-plain-better

API than either of the vendor specific ones that it replaced. I fretted

for a while over whether I should leave in support for the older APIs for

broader driver compatibility, but the final decision was that we are going

to require a modern driver for the game to run in the advanced modes.

1.1. NV30 VS R300, CURRENT DEVELOPMENTS, ETC (JAN 29, 2003)

John Carmack Archive 4 .plan 2003

Older drivers can still fall back to either the ARB or NV10 paths.

The newly-ratified ARB_vertex buffer_object extension will probably let
me do the same thing for NV _vertex _array range and ATI vertex_array_object.

Reasonable arguments can be made for and against the OpenGL or Direct-
X style of API evolution. With vendor extensions, you get immediate
access to new functionality, but then there is often a period of squab-
bling about exact feature support from different vendors before an indus-
try standard settles down. With central planning, you can have "phas-
ing problems” between hardware and software releases, and there is a
real danger of bad decisions hampering the entire industry, but enforced
commonality does make life easier for developers. Trying to keep boneheaded-
ideas-that-will-haunt-us-for-years out of Direct-X is the primary reason
I have been attending the Windows Graphics Summit for the past three
years, even though I still code for OpenGL.

The most significant functionality in the new crop of cards is the truly
flexible fragment programming, as exposed with ARB_fragment_program.
Moving from the "switches and dials” style of discrete functional graph-
ics programming to generally flexible programming with indirection and
high precision is what is going to enable the next major step in graphics
engines.

It is going to require fairly deep, non-backwards-compatible modifica-
tions to an engine to take real advantage of the new features, but working
with ARB_fragment_program is really a lot of fun, so I have added a few
little tweaks to the current codebase on the ARB2 path:

High dynamic color ranges are supported internally, rather than with
post-blending. This gives a few more bits of color precision in the final
image, but it isn’t something that you really notice.

Per-pixel environment mapping, rather than per-vertex. This fixes a pet-
peeve of mine, which is large panes of environment mapped glass that
aren't tessellated enough, giving that awful warping-around-the-triangulation
effect as you move past them.

Light and view vectors normalized with math, rather than a cube map.
On future hardware this will likely be a performance improvement due

1.1. NV30 VS R300, CURRENT DEVELOPMENTS, ETC (JAN 29, 2003)

John Carmack Archive 5 .plan 2003

to the decrease in bandwidth, but current hardware has the computa-
tion and bandwidth balanced such that it is pretty much a wash. What
it does (in conjunction with floating point math) give you is a perfectly
smooth specular highlight, instead of the pixelish blob that we get on
older generations of cards.

There are some more things I am playing around with, that will probably
remain in the engine as novelties, but not supported features:

Per-pixel reflection vector calculations for specular, instead of an inter-
polated half-angle. The only remaining effect that has any visual depen-
dency on the underlying geometry is the shape of the specular highlight.
Ideally, you want the same final image for a surface regardless of if it is
two giant triangles, or a mesh of 1024 triangles. This will not be true if
any calculation done at a vertex involves anything other than linear math
operations. The specular half-angle calculation involves normalizations,
so the interpolation across triangles on a surface will be dependent on
exactly where the vertexes are located. The most visible end result of this
is that on large, flat, shiny surfaces where you expect a clean highlight
circle moving across it, you wind up with a highlight that distorts into an
L shape around the triangulation line.

The extra instructions to implement this did have a noticeable perfor-
mance hit, and I was a little surprised to see that the highlights not only
stabilized in shape, but also sharpened up quite a bit, changing the scene
more than I expected. This probably isn’'t a good tradeoff today for a
gamer, but it is nice for any kind of high-fidelity rendering.

Renormalization of surface normal map samples makes significant qual-
ity improvements in magnified textures, turning tight, blurred corners
into shiny, smooth pockets, but it introduces a huge amount of aliasing
on minimized textures. Blending between the cases is possible with frag-
ment programs, but the performance overhead does start piling up, and
it may require stashing some information in the normal map alpha chan-
nel that varies with mip level. Doing good filtering of a specularly lit nor-
mal map texture is a fairly interesting problem, with lots of subtle issues.

Bump mapped ambient lighting will give much better looking outdoor
and well-lit scenes. This only became possible with dependent texture
reads, and it requires new designer and tool-chain support to implement

1.1. NV30 VS R300, CURRENT DEVELOPMENTS, ETC (JAN 29, 2003)

John Carmack Archive 6 .plan 2003

well, so it isn’t easy to test globally with the current Doom datasets, but
isolated demos are promising.

The future is in floating point framebuffers. One of the most notice-
able thing this will get you without fundamental algorithm changes is the
ability to use a correct display gamma ramp without destroying the dark
color precision. Unfortunately, using a floating point framebuffer on the
current generation of cards is pretty difficult, because no blending oper-
ations are supported, and the primary thing we need to do is add light
contributions together in the framebuffer. The workaround is to copy
the part of the framebuffer you are going to reference to a texture, and
have your fragment program explicitly add that texture, instead of hav-
ing the separate blend unit do it. This is intrusive enough that I probably
won't hack up the current codebase, instead playing around on a forked
version.

Floating point framebuffers and complex fragment shaders will also al-
low much better volumetric effects, like volumetric illumination of fogged
areas with shadows and additive/subtractive eddy currents.

John Carmack

1.1. NV30 VS R300, CURRENT DEVELOPMENTS, ETC (JAN 29, 2003)

Chapter 2

February

2.1 Feb 07,2003

The machinima music video that Fountainhead Entertainment (my wife’s
company) produced with Quake based tools is available for viewing and
votingon at: http://www.mtv.com/music/viewers_pick/ ("In the waiting
line”)

I thought they did an excellent job of catering to the strengths of the
medium, and not attempting to make a game engine compete (poorly)
as a general purpose renderer. In watching the video, I did beat myself
up a bit over the visible popping artifacts on the environment mapping,
which are a direct result of the normal vector quantization in the md3
format. While it isn’t the same issue (normals are full floating point al-
ready in Doom), it was the final factor that pushed me to do the per-pixel
environment mapping for the new cards in the current engine.

The neat thing about the machinima aspect of the video is that they also
have alittle game you can play with the same media assets used to create
the video. Not sure when it will be made available publicly.

http://www.mtv.com/music/viewers_pick/

	January
	NV30 vs R300, current developments, etc (Jan 29, 2003)

	February
	Feb 07, 2003

