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Quick definition guide 

 

𝑥 Displacement 

𝑣 Velocity 

𝑎 Acceleration 

𝑓 Force 

𝑚 Mass 

𝑘 Stiffness coefficient 

𝑑 Damping coefficient 

𝜃 Angular displacement 

𝜔 Angular velocity 

𝛼 Angular acceleration 

𝜏 Torque 

𝐼 Moment of inertia 

𝛥𝑡 Delta time (time step) 

𝑗 Impulse 

 

 

The trouble with springs 

 

The damped spring based on Hooke's law of elasticity is often regarded as a black sheep in 

the field of game physics, and some papers and websites even warn the reader against 

implementing them. There are a couple of good reasons for this. 

 

The most straight-forward reason is that springs are notoriously difficult to tune. It can be 

very time consuming to adjust the spring stiffness and damping coefficients in order to 

make a simulation behave just right. For large systems of interconnected particles and 

springs the task can be daunting. If a variable is changed, for instance a spring coefficient, 

the mass of a particle, or simulation time-step, you might have to re-tune the entire system 

from scratch. 

 

A more profound reason for avoiding springs is that they are potentially unstable. When 

increasing the spring coefficients above an unknown threshold, the simulation will start to 

oscillate chaotically and explode in all directions. Everyone who ever worked with springs 

has experienced this frustrating phenomenon. The problem is that there’s no good method 
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to determine in advance if a given spring system will explode or not. Thus, the 

programmers or game designers ability to balance a spring system often rely on experience 

and gut feeling, which makes it look more like black magic than actual physics. 

 

In this article I’ll introduce a modified spring equation that is easy to tune, displays 

maximum stiffness and damping, and is guaranteed to keep the spring system stable under 

all conditions. The math behind the equation is surprisingly simple, which makes me 

wonder why it doesn’t appear to have been mentioned or implemented earlier. 

 

 

Making a better spring 

 

The improved spring equation stems from trying to answer a simple question: Is it possible 

to make a spring that reaches its rest state in just one simulation loop? It turns out that the 

answer is yes! This wouldn’t be possible in the real world, since it would require infinitely 

high stiffness and damping coefficients or zero mass. But in the not-quite real world of 

discrete, time-stepping physics simulation, this is achievable.  

To explain how this is done, let's look at a one dimensional harmonic oscillator with a 

damped spring attached to a fixed point in one end and to a moving body in the other. 

Assume that the body is displaced distance x from its rest position. Now let us try to find 

the exact amount of force required to move the mass this distance in one simulation loop. 

 

Distance can be expressed as velocity multiplied by time 

 

x = −vΔt           (1) 

 

The minus sign simply means that we are going in the opposite direction of the 

displacement. Velocity can be expressed as acceleration multiplied by time 

 

x = −aΔt2           (2) 

 

Newton's 2nd law of motion state that acceleration equals force over mass 

 

x = −
f

m
Δt2           (3) 
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Now we can isolate force 

 

f = −
m

Δt2
x           (4) 

 

And since the spring force in Hooke's law of elasticity is defined as 

 

f = −kx           (5) 

 

It becomes immediately clear that 

 

k =
m

Δt2
           (6) 

 

Which is the exact spring stiffness coefficient value required to move the particle back to 

its rest position in one simulation loop. However, since we are not doing anything to stop 

the particle, it will keep oscillating back and forth through the rest position. We need to 

add damping, which is done with the second part of the spring equation. By calculating the 

amount of force needed to zero out the particle's velocity we can make it stop at the rest 

position. 

 

Velocity is equal to acceleration multiplied by time step 

 

v = −aΔt           (7) 

 

This is equal to force over mass 

 

v = −
f

m
Δt           (8) 

 

When isolating force we get 

 

f = −
m

Δt
v           (9) 

 

And since the damping force is defined 
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f = −dv           (10) 

 

We immediately see by inspection that the damping coefficient is 

 

d =
m

Δt
           (11) 

 

This is the exact damping coefficient value needed to stop the particle in one simulation 

loop. Now we can write the complete damped spring equation. 

 

f = −
m

Δt2
x −

m

Δt
v          (12) 

 

This spring equation has some very interesting properties. The first thing we notice is the 

lack of coefficients. We've simply replaced k with m/Δt2 and d with m/Δt. When 

implementing the equation we see that it really does work! The spring reaches equilibrium 

in one loop, completely independent of particle position, velocity, mass, and simulation 

time-step. This is the stiffest possible spring, and it displays behavior more similar to a 

rigid constraint than a soft, bouncy spring. The equation also has another interesting 

property. It simply cannot blow up no matter what values you feed it. Practically speaking, 

we can regard the spring as being unconditionally stable. 

 

 

Re-introducing the spring coefficients 

 

Now we have a really powerful spring equation. It is easy to implement, very stable, and 

reaches its rest state in just one loop. But in our quest towards a better spring it has lost its 

springiness. We need to get the softness and bounciness back again, and for this purpose 

we will re-introduce the spring and damping coefficients. To avoid confusion, the new 

coefficients are named CK and Cd. While the original coefficients could represent any 

positive numerical value, these both lie in the interval between zero and one.  

 

f = −
m

Δt2
𝐶𝑘 x −

m

Δt
𝐶𝑑 v  [0 ≤ Ck, Cd ≤ 1]     (13) 
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As we can see, the new coefficients are simply the fraction of completely rigid behavior we 

would like the spring to display. Soft, bouncy springs would usually have values in the 

range of 0.001 – 0.00001. In the other end of the scale, values of just 0.1 – 0.01 is enough 

to display rigid behavior. Setting both values to 1.0 would of course still satisfy the 

constraint in one loop.  

 

Please notice that spring behavior is determined exclusively by these two coefficients. 

Particle mass or simulation time-step has no influence on how the spring behaves, and 

changing them wouldn't make it necessary to tune the system again!  

 

Interestingly, the spring will get less rigid and less stable if we increase Ck or Cd above 1. If 

we keep increasing either or both of the coefficient values, the system will start to oscillate 

chaotically, and at some point it will explode. In other words, we have determined the 

exact upper limit for the two spring coefficients, which we define 

 

kmax =
m

Δt2
           (14) 

dmax =
m

Δt
           (15) 

 

This allows us to simplify the spring equation  

 

f = −kmax 𝐶𝑘 x − dmax 𝐶𝑑  v        (16) 

 

There is an important conclusion to be drawn from this. It is a misunderstanding to think 

that spring stiffness and damping can be increased towards infinity by simply increasing k 

and d. A system of very stiff springs doesn’t necessarily blow up because the integration 

algorithm can't handle it, but because the coefficients might have been set to a value that 

simply does not make sense. 

 

 

Two connected particles with different mass 

 

It is only slightly more complicated to constrain two free-moving particles with the 

improved spring. To do this, we need to introduce the concept of reduced mass. This is a 

quantity that can be used to compute interactions between two bodies as-if one body was 
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stationary, which allows us to use the equation we've already derived. The reduced mass 

for two particles with mass m1 and m2 is defined 

 

mred =
m1m2

(m1+m2)
          (17) 

 

Since the inverse mass quantity is often already pre-computed for other purposes, it can 

also be useful to define reduced mass 

 

mred =
1

(
1

m1
+

1

m2
)
          (18) 

 

For two connected particles, the maximum coefficient values are 

 

kmax =
mred

Δt2
           (19) 

dmax =
mred

Δt
           (20) 

 

When replacing mass with reduced mass we get 

 

f = −
mred

Δt2
x −

mred

Δt
v         (21) 

 

This spring equation will bring the two connected particles to equilibrium distance in one 

loop and make them stand still relative to each other. However, since energy and 

momentum are conserved, the particles may rotate around each other, which will make the 

bodies come to rest at a larger distance, depending on how fast they rotate. 

 

 

Angular springs 

 

The spring equation can also be used for angular springs, also commonly named rotational 

or torsional springs. Rather than keeping two particles at a fixed distance by applying 

opposite equal forces, the angular spring will try to keep two rotating bodies at a fixed 

angle by applying opposite equal torques. The equation introduces the concept reduced 

moment of inertia, which is calculated in a similar way as reduced mass 



7 

 

𝐼red =
𝐼1𝐼2

(𝐼1+𝐼2)
           (22) 

 

Or alternatively 

 

𝐼red =
1

(
1

𝐼1
+

1

𝐼2
)
           (23) 

 

The maximum coefficient values for angular springs are 

 

𝑘max =
𝐼red

𝛥𝑡2
           (24) 

𝑑max =
𝐼red

𝛥𝑡
           (25) 

 

When replacing the variables of linear motion with those of angular motion we get 

 

𝜏 = −
𝐼red

𝛥𝑡2
𝐶𝑘  𝜃 −

𝐼red

𝛥𝑡
𝐶𝑑  𝜔        (26) 

 

This spring equation will keep two rotating bodies at any given rest angle. If both 

coefficients are set to 1, the constraint will be solved in one loop. The spring allows for 

angular displacements larger than one full turn, making it possible to “wind up” bodies like 

the coil spring of a mechanical clock. 

 

 

Impulse-based springs 

 

Today a lot of physics engines and simulation methods are based on impulses - direct 

changes in velocities - rather than forces and acceleration. The linear and angular spring 

equations described above works equally well if we redesign them to work with impulses. 

Here are the equations without further ado 

 

𝑗linear = −
𝑚red

𝛥𝑡
𝐶𝑘  𝑥 − 𝐶𝑑  𝑣         (27) 
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𝑗angular = −
𝐼red

𝛥𝑡
𝐶𝑘  𝜃 − 𝐶𝑑  𝜔         (28) 

 

The impulse based springs work just like the force based ones already described. The only 

notable difference is that when dealing with continuous forces that change gradually over 

time – like in springs – the impulse based equations are limited to 1st order of magnitude 

accuracy when it comes to conserving energy and momentum. Force based equations are, 

on the other hand, only limited by the integration algorithm, and can return results that 

are much more accurate.  

 

 

Limitations and pitfalls 

 

When connecting a multitude of springs and particles into larger bodies, we run into the 

same trouble as any other type of distance and velocity constraint. Rather than 

cooperating, the constraints tend compete against each other, and this spells trouble. 

When a spring moves two particles to satisfy distance and velocity, it usually means 

dissatisfying one or several other springs. It is outside the scope of this article to dig deeply 

into this problem, but the author would like to provide a bit of advice on how to prevent 

the worst disasters. 

 

When two or more springs are connected to the same particle, which is the case in any kind 

of rope, mesh, or deformable body, setting the coefficients to the maximum value of 1.0 

will lead to stability problems. Although the spring equation is unconditionally stable when 

particles are connected to just one spring, this is sadly not the case for higher number of 

springs. The author of this article has after some lengthy tampering worked out that a safe 

upper limit for both the stiffness and damping coefficient is 

 

Cmax ≈
1

(n+1)
           (29) 

 

Where n denotes the highest number of springs attached to any of the two particles 

connected by the spring. So for example, in a rope where any particle is connected by at 

most two springs, Ck and Cd can both safely be set to 0.33, and in a square mesh, where 

any particle is at most connected by four springs, they can be set to 0.2.  
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