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I’m back after a hiatus of nine years. Time does fly, doesn’t it? For those counting
articles, the last one published was part 12; there is no Part 13.

After such a long time away, it might be worthwhile to repeat the motivation and goals
of this “Physics of Racing” series. 1 am a physicist (the “PhD” after my name is from my
Union card). I'm also an active participant in motorsports. It would be almost impossible for
me not to use my professional training to analyze my hobby. So, I've been thinking for some
time about the physics of racing cars.

Part of the fun for me is to do fotally original analyses. As such, they won’t have the
specifics of a hardcore engineering analysis. You can look that up in books by Fred Puhn,
William Milliken, and Carrol Smith, amongst many others. I want to find the bare-bones
physics behind the engineering—at the risk of bypassing some detail. In sum, I analyse things
completely from scratch because:

o I want the depth of understanding that can only come only from figuring things out from
from first principles,

e “pecking at the answer” from someone else’s work would spoil the fun for me,

o I hope to give a somewhat fresh outlook on things.

In 1990, one of my fellow autocrossers asked me to write a monthly column for the
SCCA CalClub newsletter. After receiving lots of encouragement, I released the columns to
the Internet via Team Dot Net. Back then, the Internet was really small, so I was just sharing
the articles in a convenient way with other autocrossers. Since then, the Intemet got big and
my articles have acquired a life of their own. I have received thousands of happy-customer
emails from all over the world, plus a few hate mails (mostly about article #4, in case you’re
wondering).

So, here we go again. This month, I'd like to understand, from first principles, why
it’s so important to be smooth on the controls of a racing car. To me, “smooth™ means
avoiding jerkiness when applying or releasing the brakes, the gas, or steering. Most of
the time, you want to roll on and off the gas, squeeze on and off the brakes, slither in and
out of steering. It’s just as important to avoid jerkiness at the end of a manoever as at the
beginning. For example, when steering, not only should you start turning the steering wheel
with a gradual, smooth push, but you want to complete the wind-up with a gradual, smooth
slowing of the push. Likewise, when you unwind the wheel, you want to start and stop the
unwinding smoothly. Thus, a complete steering manoever consists of four gradual, slithery
start-and-stop mini-manoevers. A complete braking event has four little mini-slithers: one
each for the start and stop of the application and the releasing of the pedal. Same for the



throttle.

Ok, great, but why? At first blush, it seems one would be able to get back on the gas
more quickly by snapping the throttle on or get into a corner more quickly by whipping the
wheel. Furthermore, supposing we can justify smoothness, are there exceptions to the rule?
Are there times when it is best to snap, whip, or jerk? And exactly how smooth should one
be? Smoothing means slowing the control inputs down, in a particular way, so it’s obviously
possible to be too smooth, as in not quick enough, as in not getting as much out of the car as
it’s capable of delivering.

Let’s tackle “why”, first. As usual, physics has technical meanings for everyday words.
One of the “physically correct” meanings of “smooth” is sinusoidal. A sinusoid is a curve

that looks like this:
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If we think of, say, steering-wheel winding angle as proportional to the vertical axis
and time in seconds along the horizontal axis, then this picture describes a really smooth
windup taking one second followed immediately by a really smooth unwinding taking
another second. In fact, you can easily see the four mini-slithers discussed above as the
head-and-tail-sections of the bumps and valleys of the curves. So, the question “why”, in
technical terms, amounts to asking why such a curve represents better steering input than a
curve like the following, “upside-down-hat” curve:
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Now, here’s the reason: sinusoidal inputs are better because they match the natural
response of the car! The suspension and tires perform, approximately, as damped harmonic
oscillators, or DHOs. A DHO can be in one gf three conditions: underdamped, critically
damped, ot overdamped. In the underdampeg condition, a DHO doesn’t have a strong



damper, which is another term for shock absorber. An underdamped DHO responds
sinusoidally. We’ve all seen cars with broken shocks bouncing up and down on the springs.
In the critically damped and overdamped conditions, the car bounces just once, because the
damper provides some friction to quiet down continued bouncing. However, even in these
conditions, the one bounce has an approximate sinusoidal shape.

The most important parameter of any DHO is its frequency. In the underdamped
condition, the frequency corresponds to the number of bounces per second the DHO
performs. In the critically damped and overdamped conditions-as well as in the
underdamped condition, the frequency corresponds to the resonance frequency or natural
frequency of the system! In other words, if you provide so many inputs per second, back and
forth, as in a slalom, at the resonance frequency, the car will have maximal response. If the
inputs are faster, they will be too fast for the DHO to catch up and rebound before you've
reversed the inputs. If the inputs are slower, the DHO will have caught up and started either
to bounce the other way or to settle, depending on condition, when the reverse input comes
m.

So here’s the bottom line: to maximize the response of a car, you want to provide
steering, braking, and throttle inputs with sinusoidal shapes at the resonance frequency of
the DHOQs that constitute the suspension and tire systems. Inputs that are more jerky just
dump high-frequency energy into the system that it must dissipate at lower frequencies. In
other words, jerky inputs upser the car, which what drivers say all the time. By matching
the shape and frequency of your control inputs to the car’s natural response curve, you're
telling the car to do something it can actually do. By giving the car an “instruction” like the
upside-down hat, you’re telling it to do something it can’t physically do, so it responds by
flopping and bouncing around some approximation of your input. Flopping and bouncing
means not getting optimum traction, means wasting energy in suspension oscillation; means
going slower. Now, there is an exception: if the front tires are already sliding, a driver may
benefit from quickly steering them into line, hoping to “catch” the car. Likewise, a jerky blip
on the throttle with the clutch engaged to bring up the revs to match the gears on a downshift
is usually the right thing to do. But, when the car is hooked up, getting the most out of the
car means simulating the response of the various DHOs in the system with steering, braking,
and throttle inputs.

Now we know the physics behind it. Let’s do some math!

The frequency turns out to be w = ++/k/m, as we show below. & is the spring constant,
typically measured in pounds per inch, and m is the mass of the sprung weight, typically
measured in pound-masses. Suppose our springs were 1,0001b / in, supporting about
800 1b of weight on one corer of the car. First, we note that a pound force is roughly
(1/32) slug — ft / s* and that a pound weight is (1/32) slug. So, we’re looking at

1.000b—force gin 1 slug—ft/s2
! in “ft 32 lb— force
800 b —weight
321b —weight / slug

12,000 120/8 15
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Notice that we’ve used the back-of-the-envelope style of computation discussed in part
3 of this series. We’ve found that the resonance frequency of one comer of a car is about 4
bounces per second! This matches our intuitions and experiences: if one pushes down on
the corner of a car with broken shocks, it will bounce up and down a few times a second,
not very quickly, not very slowly. We can also see that the frequency varies as the square
root of the spring constant. That means that to double the frequency, say, to 8 bounces
per second, we must quadruple the spring strength to 4,0001b / in or quarter the sprung
weight to 200 1b. [Note added in proof: My friend, Brad Haase, has pointed out that 4 Hz,
while in the “ballpark”, is much too fast for a real car. Now, this series of articles is only
about fundamental theory and ballpark estimates. Nonetheless, he wrote convincingly “can
you imagine a 4-Hz slalom?” I have to admit that 4 Hz seemed too fast to me when I first
wrote this article, but I was unable to account for the discrepancy. Brad pointed out that the
suspension linkages supply leverage that reduces the effective spring rate and cited the topic
“installation ratio” in Milliken’s book Race Car Vehicle Dynamics. Since 1 have not peeked
at that book, on purpose, as stated in the opening of this entire series and reiterated in this
article, I can only confidently refer you there. Nonetheless, intuition says that 1 Hz is more
like it, which would argue for an effective spring rate of 1000/16 = 621b / in .]

How do we derive the frequency formula? Let’s work up a sequence of approximations
in stages. By improving the approximations gradually, we can check the more advanced
approximations for mistakes: they shouldn’t be too far off the simple approximations. In the
first approximation, ignore the damper, giving us a mass block of sprung weight resting on a
spring. This model should act like a comner of a car with a broken shock.

Let the mass of the block be m. The force of gravitation acts downwards on the block
with a magnitude mg, where g = 32.1 ft / s? is the acceleration of Earth’s gravity. The force
of the spring acts upward on the mass with a magnitude & (yo — y), where k is the spring
constant and (y — yo) is the height of the spring above its resting height y, (the force term is
positive—that is, upward-when y — y, is negative—that is, when the mass has compressed the
spring and the spring pushes back upwards). We can avoid schlepping y¢ around our math
by simply defining our coordinate system so that 5o = 0. This sort of trick is very useful in
all kinds of physics, even the most advanced.

It’s worth noting that the model so far ignores not only the damper, but the weight of the
wheel and tire and the spring itself. The weight of the wheel and tire is called the unsprung
weight. The weight of the spring itself is partially sprung. We don’t add these effects in the
current article. Today, we stop with just adding the damper back in, below.

Newton’s first law guides us from this point on. The total force on the mass is
—ky — mg. The mass times the acceleration is m (dv, /dt) = m (d?y/dt?), where v, is
the up-and-down velocity of the mass and dv, /d¢ is the rate of change of that velocity.
That velocity is, in tum, the rate of change of the y coordinate of the mass block, that is,
vy, = (dy/dt). So, the acceleration is the second rate of change of y, and we write it as
d?y/dt? because that’s the way Newton and Leibniz first wrote it 350 years ago. We have
the following dynamic equation for the motion of our mass block.

d?y

F=ma=m—=—-ky—m
ma m— y —mg



Let’s divide the entire equation by m and rearrange it so all the terms are on the left:

Py  k

2J9 . =0

dt? * m’ tg

If we’re careful about units, in particular about slugs and lbs (see article 1), then we can

note that k/m has the dimensions of 1/ sec?, which is a frequency squared. Let’s define

k
W=
m
yielding
d?y
@ Tyt =0

We need to solve this equation for y (t) as a function of time . To follow the rest of this,
you’ll need to know a little freshman calculus. Take, as ansatz,

y = A+ Be®“!
then
d
Ey = CwBe%“' = Cw (y — A)
and
dy dy 2
therefore
d%y 2 2 2, 2
EtE_Hd y+g9 = (Cw)’'y—A(Cw)" +wy+g

= w? (C2+1)y— (A(Cw)z—g)
= 0ifC?=—-1land A = —g/w?

So, we see there are two solutions, y (¢) = A + Bie** andy (t) = A+ Bze™ ™. In
fact, the time-dependent parts of these solutions can operate simultaneously, so we mus?
write y (t) = A + Bye™t + Bae~** in all generality. The values of the two unknowns B;
and B3 are determined by two initial conditions, that is, the value of y (0) = A + By, + By
and (dy/dt) (0) = iw (B; — By).

Let’s get out of the complex domain by writing

Bleq,wt + Bze—zut

il

B; (coswt + isinwt) + By (cos wt — isinwt)
(B1 + B2) coswt + 4 (B; — Ba) sinwt
C1 coswt + Cy sinwt

A
This definition makes our initial conditions simpler, too:

y (0) = C; vy (0) = wCs
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It’s easy, now, to add the damper. Damping forces are proportional to the velocity; that
is, there is no damping force when things aren’t moving. Each comer approximately obeys
the equation

d?y Sdy k
@~ md m? Y

where § is the damper response in 1b — force/ (ft / s). The three rightmost terms
represent forces, and they are all negative when y and dy/dt are positive. That is, if you
pull the sprung weight up, the spring tends to pull it down. Likewise, if the sprung weight
is moving up, the damper tends to pull it down. The force of gravitation always pulls the
weight down. Let’s rewrite, as before:

d%y dy o
T2 + ’YE +wy+9g=0
where w? = k/m and y = §/m. If, as before,
y = A+B6th
then
d
d_gt/ = CwBe®“" = Cw (y — A)
and
d*y dy 2
= = Cw= =(C —A
therefore
d? d
Frrg ety = (CW) - A+ 0wy —A) +eiy+g

= ((C*+1)w+Cy)wy — (ACw (Cw+7) —g)
= 0iffwC?++9C+w=0and ACw (Cw+7)=g

You may remember the little high-school formula (—b + /62 — 4ac) /2a for the
solution of a quadratic equation. This gives us the answer for C-

C= _7:*: V"Yz_4w2
- 2w

and I'll leave the simple arithmetic for A and the initial conditions to the reader. The
critcally damped condition obtains when v = 2w, overdamped when when v > 2w, and
underdamped when vy < 2w. In the underdamped condition, C has an imaginary component
and the exponentials oscillate. Otherwise, they just take one bounce and then settle down.

It will be fun and easy for anyone who has followed along this far to plot out some curves
and check out my math. If you find a mistake, please do let me know (I just wrote this off
the top of my head, as I always do with these articles).

We could improve the approximation by writing down the coupled equations, that is,
treating all four corners of the car together, but that would just be a lot more math without
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changing the basic physics that the car responds more predictably to smooth inputs and
less predictably to jerky inputs. Another improvement would be to add in the effect of the
unsprung and partially sprung weight.



